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The fundamentals of time-dependent mechanics of isotropic, homogeneous and linearly 
viscoelastic body under isothermal condition are presented. Starting from the 
time-dependent response of the simplest two-element models with their stress-strain 
relations, explanation on generalized Maxwell and Voigt models under uni-axial stress 
and strain state are described. Since the constitutive equations in higher order differential 
form, are inconvenient in practical use; we introduce them into the plane of Laplace 
transform, paying attention to zero-condition. Moreover, the constitutive equations are 
also derived by the concept of fading memory in convolution integral form. Laplace 
transform of the equations in convolution integral yields similar stress-strain relations 
with those derived from the differential equations. It is shown that the constitutive 
equations of linearly viscoelastic body can be possibly discussed in the frame work of 
pseudo-elastic treatment, standing on the correspondence rule. In addition, dynamic 
response under sinusoidal input and the retardation of phase angle of response are 
discussed. The classical technique for the measurement of material functions, for 
example relaxation modulus, is shown step by step. In this section, the time-temperature 
shift technique is also introduced to discuss very wide range of time over more than ten 
digits. After measuring characteristic functions, the authors introduce the collocation 
technique with Prony series proposed by Schapery, to approximate the functions. 
Examples of the master curve of relaxation modulus and creep compliance are shown 
with theresults of approximations. The expansion of one-dimensional viscoelastic 
analyses to those in multi-axial stress and strain state is also presented in the framework 
of the correspondence rule. All equations necessary in multi-axial viscoelastic 
stress-strain analysis, i.e., the equilibrium equation of stress, the compatibility equation of 
strain, the strain-displacement relation, and boundary conditions, are Laplace 
transformed. In the last stage, several problems involved in simultaneous measurement of 
two independent material functions and in the heat generation due to loss energy under 
dynamic response of polymers are pointed out to encourage vigorous challenge by young 
reserchers and engineers. 
 
1. Introduction 
 
To be exact, there is no ‘time-independent’ response of material in the world. The concept 
of time-independence is just a simplification or abbreviation of real material response. 
For example, the deformation response even under an instantaneous loading imposed on a 
real body is clearly dependent on ‘time’. However, since the treatise on time-dependent 
mechanical response of materials is somewhat complicated and not so familiar even in 
engineering community, the treatises based on time-independent response, such as 
elasticity and plasticity, have been dominant in designs and analyses up to date, moreover 
in other words such simplification has been even useful when one handles metals and 
hard plastic polymers in relatively short time range.  
 
In the recent industrial world, tremendous amount of various polymers have been 
developed and utilized. Our world is covered with full of polymeric materials whose 
mechanical properties are essentially and obviously ‘time-dependent.’ Indeed, most of 
polymeric solids exhibit time-dependent and viscoelastic mechanical behavior in a 
certain range of temperature. In order to utilize these materials practically and efficiently 
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in proper ways, it is not only effective but necessary to understand the concept of 
‘time-dependent’ mechanical properties and behaviors of the materials, as the first step, 
in a frame work of ‘linear viscoelasticity.’  
 
The word ‘viscoelastic’ comes from the combination of elastic nature of solids and 
viscous one of fluids. In an elastic body, it deforms instantaneously under load and its 
deformation is kept constant if load does not change. An ideal elastic body does not show 
any time dependent properties and behaviors, so as to say that the response of such 
material is essentially time-independent. On the other hand, in a viscous fluid, flow 
(deformation) gets on with time, and resistance against deformation depends not only on 
the rate of deformation but on temperature. Thus, in a viscoelastic body, both load and 
deformation are well dependent on time and temperature. Whether we can recognize the 
change of deformation or load with our natural senses is dependent both on its amount 
and time scale in which it occurs. The authors will discuss, in this article, the time 
dependent mechanical response of viscoelastic body firstly to input, then the temperature 
dependence of them later in a brief manner with the ‘time-temperature shift’ technique. 
 
 
 
2. Model Representations of Viscoelasticity 
 
The name of ‘viscoelastic’ response comes from combined ‘elastic’ and ‘viscous’ 
characteristics of materials. The simplest method for explaining viscoelastic behaviors 
will be given in the investigation of response to input in ‘two-element’ models. 
 
 2.1. Typical Viscoelastic Behaviors  
 
Let us now consider a simple case of thin string under uniaxial stress and strain. For 
instance, under a constant stress (load), a viscoelastic body in general show 
time-dependent incremental strain (or deformation) accompanied with instantaneous 
elastic strain, which is called as ‘creep.’ When one deforms a body instantaneously and 
keeps strain constant, stress responds instantaneously up to a certain level then decreases 
continuously with time, called as ‘stress relaxation.’ Figure 1 shows a schematic 
illustration of the relaxation of stress response ( )tσ  under strain input 0ε  imposed at 

0t =  and kept constant, hereafter. 
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Figure 1. Schematic illustration of stress relaxation under stepwise strain input 
 
Here we can see interesting phenomena, as an example, which will never be seen in 
elastic body. Let us consider an input of strain ( )tε as shown in the left side of Figure 2, 
which can be separated as shown in the right side, standing on the superposition of 
stepwise strains imposed at different time. What is the response of stress ( )tσ ? Two 
curves in the left side of Figure 3 are stress responses for each input imposed at different 
time. Then we can superpose two response curves together as shown in  the right side.  

 

 
 

Figure 2. Division of input strain 
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Figure 3. Superposition of responses 
 
Here, the input strain keeps tension covering the whole time duration and does not fall 
into compression. But stress response sometimes drops into compression during a certain 
period. This is one of the typical effects of viscoelastic response. We should be, therefore, 
careful to the change of sign of stress due to the history of input and viscoelastic 
properties of material. Another typical effect is observed under dynamic or sinusoidal 
inputs of stress or strain. In the cases, we can observe dumping effect and/or heat 
generation due to loss energy which comes from stress-strain hysteresis, namely the 
retardation of response to input.  
 
2.2. Constitutive Equations of Two-Element Models 
 
Most intuitive explanation of viscoelastic responses will be given by the combination of 
two different types of stress-strain relation, such as Hookian elastic models, i.e. ‘springs’, 
and Newtonian viscous models, ‘dashpots.’ The stress-strain relations in spring and 
dashpot are written respectively as; 
 

( ) ( ) ( ) ( )d
s s dfor spring, for dashpot

d t
t k t t

dt
ε

σ ε σ η= =  (1) 

 
Here, let us combine ‘spring’ and ‘dashpot’ in series or parallel. Figure 4(a) and (b) show 
typical types of two-element model, i.e. Maxwell model and Voigt model.  
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Figure 4. Two-element models 
 

2.2.1. Maxwell Model  
 
In this model, a spring with elastic constant Mk  and a dashpot with viscous constant Mη  
are connected in series as shown in the figure. We consider that the model is loaded by 
stress ( )tσ  at both ends and consequently resulted in strain ( )tε . Stresses in spring and 
dashpot are in common and total strain of those in spring and dashpot is given by the sum 
of them as follows, 
 

( ) ( ) ( ) ( ) ( ) ( )s d s d,t t t t t tσ σ σ ε ε ε= = + =  (2) 
 
Substituting Eq.(1) into the above equation, we have the stress-strain relation of the 
model as, 
 

( ) ( ) ( )M
M

1d t d t
k t

dt dt
ε σ

σ
τ

= + ,       (3) 

 
where M M Mkτ η= , the relaxation time of Maxwell model. The meaning of Mτ  will be 
shown in the later section. 
 
2.2.2. Voigt Model 
 
In this model as shown, a spring, Vk , and a dashpot, Vη , are arranged in parallel. Stress is 
divided into spring and dashpot, but strain is in common as, 
 

( ) ( ) ( ) ( ) ( ) ( )s d s d,t t t t t tσ σ σ ε ε ε+ = = =        (4) 
Thus, the stress-strain relation of the model is given as, 
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( ) ( ) ( )

V V

1 1d t
t t

dt
ε

ε σ
τ η

+ =         (5) 

 
where V V Vkτ η= , the retardation time of Voigt model. 
 
2.2.3. General Solutions; Two-element Models 
 
Now, let us solve the differential equation Eq.( 3), at first. Multiplying Mte τ to both sides, 
we have, 
 

( ) ( )
M M

M
t t d td e t k e

dt dt
τ τ ε
σ⎡ ⎤ =⎣ ⎦  

 
Changing integral variable from t  to τ  in the above equation and denoting the time as t  
at which response of the model is observed, we will have the results under the initial 
condition that there is no stress and strain till loading starts, as ( ) ( )0, 0t tσ ε= =  at 

0 t− ≥ > −∞ ,  
 

( ) ( ) ( ) ( ) ( ) ( )M M
M M

M

1t tt td
t k e d k t e d

d
τ τ τ τε τ

σ τ ε ε τ τ
τ τ−∞ −∞

− − − −⎡ ⎤
= = −⎢ ⎥

⎣ ⎦∫ ∫   (6) 

 
In the case of Voigt model, we can obtain the following results with similar manner, as; 
 

( ) ( ) ( ) ( )( ) ( )V V

V V

1 1 1
t tt t d

t e d e d
k d

τ τ τ τ σ τ
ε σ τ τ τ

η τ−∞ −∞

− − − −= = −∫ ∫    (7) 

 
2.3. Responses of Two-Element Models to Stepwise Inputs 
 
Prior to carry forward our discussions on the response of the models, it will be useful to 
introduce the unit step function and the impulsive function defined as follows; 
 
( )1 1

1

1 :
0 :

U t t t t
t t

− = ≥ ⎫⎪
⎬

= < ⎪⎭
 Unit Step Function (Heaviside Function) 

 
( )1 1

1

:
0 :

t t t t
t t

δ − = ∞ = ⎫⎪
⎬

= ≠ ⎪⎭
 Impulsive Function (Delta Function) 

 
For example, if we want to integrate a function of time, ( )f τ , from 1t  to t , using the unit 
function we have the results as, 
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( ) ( ) ( ) ( )
1

1 1

t t

t
f U t d U t t f dτ τ τ τ τ

−∞
− = −∫ ∫ . 

 
2.3.1. Relaxation of Stress  
 
As shown in Figure 5(a), when a stepwise strain input 0ε  at 0t =  is given, we denote as 

( ) ( )0t U tε ε= . In case of Maxwell model, the response is obtained from Eq.(6) as follows, 
 

( ) ( ) ( ) ( )M M
M 0 M 0

0M

11
t t tt k U t e d k e U tτ τ τσ ε τ ε

τ
− − −⎧ ⎫

= − =⎨ ⎬
⎩ ⎭∫  (8) 

 
The result shows an instantaneous stress response, ( ) M 00 kσ ε= , then follows up with 

exponential decrease with time to ( ) 0σ ∞ = . This type of stress decrease is called 
‘Relaxation.’  
 
The relaxation modulus, ( )rE t , i.e., stress response to unit strain, is given by, 
 

( ) ( ) ( )M
r M

0

tt
E t k e U tτσ

ε
−= =         (9) 

 
Also, we can obtain ( ) ( )M M 0 0k e eσ τ ε σ= = , thus the relaxation time Mτ  represents 
the degree of the rate of stress relaxation. If Mτ  is short, the relaxation occurs rapidly, and 
vise versa. 
 
On the other hand, the response of Voigt model under stepwise strain input is obtained 
with similar calculation as, 
 

( ) ( ) ( ) ( ) ( )V 0 V 0 V 0 V 0
dt U t k U t t k U t
dt

σ η ε ε η ε δ ε= + = +     (10) 

 
The model responds like a rigid body, ( )0σ = ∞ , then follows up a constant stress 

( ) ( )V 0t k U tσ ε= , namely no relaxation is observed in this model. Figure 5(b) shows the 
responses of Maxwell and Voigt models schematically. 
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Figure 5. Stress responses of two-element models to stepwise input 
 

2.3.2. Creep of Strain 
 
Let us check up the creep response of the two models. Here, we will give an input stress 
as ( ) ( )0t U tσ σ= . Eq.(3) gives the response of Maxwell model under the same initial 
condition as follows; 
 

( ) ( ) ( ) ( ) ( )0 0

0M M
0 0

t
t U t d tU tσ σε ε τ ε

η η
= + = +∫ ,     (11) 

 
and the creep compliance of the model is expressed as, 
 

( ) ( ) ( )c
0 M M

1 1t
D t t U t

k
ε
σ η

⎧ ⎫
= = +⎨ ⎬

⎩ ⎭
       (12) 

 
The creep response of Maxwell model shows a linear increase of strain with time, namely 
the dashpot is elongated endlessly.  
 
The creep response of Voigt model is obtained by solving Eq.(7) under the same initial 
condition. The result is written as, 
 

( ) ( ) ( ) ( ) ( )V V0
0

0V V

1 1
t t tt U t e d e U t

k
τ τ τσε τ σ

η
− − −= = −∫     (13) 

 
The response strain is zero, as ( )0 0ε =  at the start of stress input, but it converge with 

time up to a value of ( ) 0 Vkε σ∞ = . The creep compliance of the model is shown as 
follows, 
 

( ) ( ) ( )V
c

V

1 1 tD t e U t
k

τ−= − . (14) 

 
Figure 6 shows the creep responses of Maxwell model and Voigt model together. When 
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evaluating the value of ( )Vε τ , we can say that the retardation time, Vτ , gives the degree 
of rate of creep response, similarly with the case of the retardation time Mτ . 

 

 
 

Figure 6. Strain responses of two-element models to stepwise stress input 
 

The discussions described on two-element Maxwell and Voigt model are simple and easy 
to understand, since the feature of time dependent response of Maxwell or Voigt body is 
represented by a single relaxation time Mτ  or retardation time Vτ . The two-element 
models are, however, simplified overly, so we have to expand discussions to more 
general models to describe real material properties, as described in the following section.  
 
 
- 
- 
- 
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