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Summary 

 

Measurement science is a very broad field, with already partial contributions to the 

EOLSS. In this Chapter the contents are restricted to the branch of measurement science 

called ‗metrology‘, comprising both ‗calibration‘ and ‗testing‘, and concerning only 

quantitative measurements. However, even after these delimitations, the field remains 

extremely vast. In general, the aim of this Chapter is to supply the reader an 

introduction to the essential concepts and to direct them to a selected and ample 

bibliography. In addition, the reader is directed to the tables of contents of nine books, 

summing up to more than 360 papers and 3000 pages, dedicated over the last 20 years 

to the subject matter of advanced mathematical, statistical and computational tools in 

metrology can be found at http://joomla.imeko.org/index.php/tc21-homepage 

(AMCTM). In this chapter the reader is assumed to be acquainted with the basic terms 

used in measurement science. 

 

1. Introduction 

 

A measurement process in physical, chemical and biological science consists initially of 

experimental determinations of a value of the quantity intended to be measured, the 

measurand, generally requiring to employ some hardware (measuring instrumentation 

system). 

 

In the preceding phase of planning the experiment, it is often required to build up a 
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model of the system subject to the measurement for several purposes: to ensure having a 

sufficiently complete picture of the measurand and understanding of its features; to 

determine the needs of the instrumentation; to possibly perform a simulation of the 

experiment, in order to detect possible problems and to optimize the instrumentation 

and its performance. 

 

Subsequent to the phase of data acquisition from the instruments while performing the 

experiment, the acquired data will need analysis and the use of a data model in order to 

obtain the measurement results and an evaluation of its uncertainty, exploiting the full 

potential of the measurements. 

 

The issues concerning instruments and hardware in general and the instrumental 

procedures are out of the scope of this Chapter. Also modeling of the systems, a very 

broad matter, will not be tackled in the following, except by providing some references. 

The contents will focus instead on data treatment, including data modeling, an issue 

requiring more and more sophisticated mathematical and statistical tools. Also 

sophisticated computer-aided tools are necessary today, which will also remain out of 

the scope of this chapter. 

 

In this chapter double quotes are for literal citations, reported in italics, single quotes for 

highlighting a term used in this text. See the meaning of the terms and acronyms at the 

end of the Chapter. 

 

2. Metrology in Measurement Science  

 

Metrology is a branch of measurement science specifically devoted to achieve two main 

goals: 

 

 At the top level of accuracy, a degree of ‗metrological traceability‘ sufficient to 

obtain nationally and internationally ‗metrological compatibility‘ at the needed 

level; 

 

 At higher levels of uncertainty (lower levels in the metrological hierarchy), 

metrological traceability of the downward chain (the metrological chain, or 

pyramid) through an ‗unbroken chain of calibrations‘. 

 

In order to ensure the achievement and maintenance in time of these goals, the 

measurement standards are the competence of metrology, so are the measurements that 

disseminate the measurement units by means of operations called ‗calibration‘ of 

standards of hierarchically low levels, including a statement about its uncertainty. 

 

For the use of the International System of Units, SI, today adopted by the vast majority 

of countries all around the world, the BIPM constitutes the top of the metrological 

chain, followed by the National Metrology Institutes (NMI), and then the secondary 

laboratories accredited by the NMIs. The latter may be, in turn, organized in ranks at 

different hierarchical levels, down to the floor level of the workshops and individual 

users.  
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At the top level, metrology is a sophisticated and demanding science, as required by the 

most accurate determination of the values of the fundamental constants of the physical 

laws. Thus, the state-of-the-art knowledge is adopted or developed at the most 

sophisticated levels and beyond. 

 

At lower levels, the metrological system relies on more and more simplified procedures 

and limited need for detailed knowledge, like it happens in most of the ‗testing‘ field. In 

the latter context, the needs are usually covered by written standards, which are 

promulgated by ISO or similar international and national organizations; for the subject 

matter of this chapter, standards are mostly those provided by the ISO Technical 

Committee 69 (TC69). 

 

The specificity of metrology with respect to the general field of measurement science 

can have a critical effect on the meaning of some basic concepts or on the methods 

preferred for data treatment. 

 

In particular, some peculiarities of the measurement results more critically affect the 

decisions to be taken based on them. In this respect, after a general treatment of other 

aspects in metrology, requiring a careful selection of suitable mathematical and 

statistical tools, this Chapter will tackle in details the issue of the systematic effects that 

affect all experimental determinations, and are responsible for the possible 

disagreement of the results that, when occurring in different laboratories, affects the 

degree of compatibility and, consequently, the integrity of the metrological chain. 

 

3. Modeling and Data Treatment 

 

When top accuracy is aimed at, the experimenter needs to get acquainted with all the 

known aspects of the physical (chemical, biological) system that will be subjected to 

measurement. 

 

Based on this knowledge, the experimenter lists the quantities that need to be measured, 

and those that must be quantitatively evaluated, in both cases because they have an 

influence on the (numerical) measurement results. They are called in fact ‗influence 

quantities‘. 

 

The required type of ―measurement process‖ (clause 2.1 in (VIM3)) is different 

depending on the fact that one needs to measure an object (e.g. a mass standard), or an 

immaterial property (e.g. time), or a functional relationship (e.g. a physical ‗law‘) 

between two or more quantities. Similarly is different when measuring an ―extensive‖ 

or an ―intensive‖ property.  

 

In addition, measurements are usually grouped into two broad categories:  

(a) ―direct‖, when the kind of quantity (VIM3) that is measured and that of the 

measurand intended to be measured coincide (e.g. mass for a mass standard):  

(b) ―indirect‖, when the measured quantity is different from the aimed measurand 

(e.g. electrical resistance for a temperature standard). In the latter instance, the 

case can be multivariate, when the involved quantities are more than one (see 

also Section 6.3.1 and 6.3.2)—―corrections‖ (see Section 8) are excluded from 
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this distinction.  

 

In both cases, one refers to one, or a few respectively, of the influence quantities. 

Invariably, the influence quantities are many more, the remaining being normally 

labeled ‗corrections‘. This distinction can cause confusion in some circumstances—see 

Section 8.4. 

 

In order to proceed, the experimenter needs to ‗model‘ the different aspects of his 

knowledge. 

 

A model can be implicit, as simple as a list of the input quantities: 

 

 1, ,  , ,  , 0i Nf Y X X X    (1) 

 

where Y  is the outcome of the measurement process, the output quantity, intended to 

realize the measurand, and the iX  are the input quantities (see Section 8 for details on 

this model in (GUM)). This is called the ―measurement equation‖ (VIM3, GUM) and is 

a relationship between variables, which are random variables whose realizations are the 

experimental observations. They are written in capital letters, the usual notation 

convention; the observations are instead written using the same lower-case letter, and an 

additional subscript index is added in the usual case of replicated measurements: for 

example, a replicated realization of iX  is written ,i jx —the term ―replicated‖ should not 

be confused with the term ―repeated‖. 

 

Not necessarily all the iX  are subject to measurement in the experiment in question. 

For some—or even most—of them the values can be obtained from prior information, 

typically from the literature, from calibration certificates, or in other ways. 

 

Not infrequently, in the case that an implicit model is used, the effect of an influence 

quantity included in the list of corrections is given as a ―sensitivity coefficient‖ (GUM), 

i.e. as the value / idY dX  in the specific range of interest. In addition, this value is often 

not obtained from a relationship expressed in analytical form, but from a sub-

experiment consisting in varying iX  and observing the variation in Y . However, from 

this subset of observations an empirical law can be subsequently drawn, e.g. a linear 

relationship or a more complicated one. 

 

Obviously an implicit model cannot be used if the model is intended for studying the 

behavior of the measurand when the influence quantities change, as required in 

simulation studies, either performed analytically or using computed-aided methods like 

Monte Carlo simulation. In these cases the model must be written in an explicit 

analytical form, i.e. expressed by specifying the analytical relationships between the 

quantities. Often this results in complicated implicit expressions, e.g. differential or 

integral equations, not solvable in closed analytical form, but requiring numerical 

solutions, e.g., by the use of a finite-elements method. The illustration of this type of 

models, though not infrequent also in metrology, is out of the scope of this Chapter. The 

reader can consult the modeling literature, since the features for the models developed 
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for metrological applications are not specific, except for the concept of uncertainty—

and the requirement for its evaluation. For modeling in metrology the reader can 

consult, e.g. (Sommer 2008), together with the involved computational tools (Steele and 

Douglas 2008a). 

 

The model for data treatment differs from the one in (1) in some features. Instead of a 

model of the variables of the system, the data model is called ‗observation model‘, and 

is written instead for the observations, or ‗input estimates‘ ,i jx  of an influence quantity 

and ‗output estimate‘ y   of the output ‗realized quantity‘, which are realizations of the 

respective random variables iX  and Y ,  i.e. are members of the respective probability 

distributions.  

 

Measurement and data models are based on statistical concepts, of critical importance in 

measurement science, and metrology in particular, which include modeling of 

uncertainty. They are treated in detail in Section 5. In modern treatments the related 

computational tools are very important also in data treatment and analysis. 

 

4. Specific Terms and Concepts for Metrology 

 

Before proceeding with the methods and associated tools to be used for exploiting the 

treatment of metrological data, let us clarify the meaning in metrology of some of the 

basic term: the Glossary will refer to Section 4 for these terms. In fact, terms are simply 

a synthetic way to express concepts. It is therefore essential to be acquainted with them 

and understand the underlying concepts, because the semantic of the terms can change 

in time and with the language, leading to possible ambiguities or misunderstandings. 

For this reason, the most recent Vocabulary of Metrology (VIM) includes also ―Basic 

and General Concepts‖ (VIM3), and will be used as the basis throughout this Chapter. 

 

4.1. Measurand 

 

The measurand is defined as the ―quantity intended to be measured‖, because it may 

happen that a measurement fails the goal to provide a measure of the aimed quantity 

(VIM3). 

 

The definition requires understanding the concept of ―quantity‖, indicated as ―property 

of a phenomenon, body, or substance, where the property has a magnitude that can be 

expressed as a number and a reference‖. Therefore, this definition is valid only for 

quantitative measurements, and ―a reference can be a measurement unit, a 

measurement procedure, a reference material, or a combination of such‖. 

 

What is not explicitly said above is that any measurand can only be defined by a finite 

list of details. Therefore, should the random component of a measurement even be 

reduced to almost nil, the uncertainty on any measurement result cannot decrease below 

what is called the ―definitional uncertainty‖. This residual uncertainty is not due to 

neither random nor systematic effects, the two traditional components of uncertainty 

(see later). The definitional uncertainty is not of statistical nature, but is due to the 

multiplicity of the possible definitions of the measurand, something that should better 
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be called the ―non-uniqueness‖ of the definition. Though amply used in metrology 

(White et al. 2009 and 2010) this term is not (yet) included in VIM (VIM3) nor in GUM 

(GUM). 

 

In top-level metrology, the non-uniqueness emerges very clearly in many fields as the 

limiting factor, and, in fact, only the addition of further specification factors to the 

properties of a measurand can allow further progress. A couple of examples are: the 

definition of the unit of time, the second, where it is now specified that ―In this 

definition it is understood that the Cs atom at a temperature of T = 0 K is unperturbed 

by blackbody radiation‖; the added specification of the isotopic composition of a 

substance in thermal metrology. 

 

Measurement results aim at accurately representing the value of the measurand. 

However, although the measurement result is conceptually different from the value of 

the measurement, ―for any scalar quantity, subtleties arise only when its uncertainty is 

not symmetric about that quantity‟s reported value (Douglas et al. 2005), so usually no 

distinction needs to be made between the distribution of measurements (or „gedanken‟ 

measurements) and the distribution of the measurand (to which formal uncertainty 

distributions refer). The formal justification for this is facilitated by the standard 

practice for metrologists of using the same value to be the best representation both of 

the (fully corrected) measurement, and of the measurand. This „fiducial value‟ (Wang 

and Iyer 2006, Guthrie et al. 2008, ISO12) simplifies, and in our view strengthens, the 

fiducial argument‖ (Steele and Douglas 2008a). 

 

4.2. Realized Quantity 

 

The GUM GUM introduced the concept of ―realized quantity‖: ―Ideally, the quantity 

realized for measurement would be fully consistent with the definition of the measurand. 

Often, however, such a quantity cannot be realized and the measurement is performed 

on a quantity that is an approximation of the measurand … Neither the value of the 

realized quantity nor the value of the 

measurand can ever be known exactly; all that can be known is their estimated values‖. 

 

4.3. Compatibility 

 

Since the basic aim of metrology is to ensure as much as possible consistent results 

from independent measurements for the same measurand, compatibility is a pivotal 

requirement to be achieved. ―Metrological compatibility‖ is defined as ―property of a 

set of measurement results for a specified measurand, such that the absolute value of 

the difference of any pair of measured quantity values from two different measurement 

results is smaller than some chosen multiple of the standard measurement uncertainty 

of that difference‖ (VIM3). 

 

Obviously, the definition bound depends on a ―chosen multiple of the standard 

measurement uncertainty‖, where the latter is the standard deviation, a basic statistical 

parameter related to the second moment of a probability distribution. The choice of the 

multiple is left to the contingent decision, since it can be different for different 

circumstances to fit the purpose. Clearly here the ―differences‖ in question are not those 
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between measurement results caused by the variability due to random effects, but are 

those arising from systematic effects (see Section 6). 

 

The importance of compatibility is so great that in the prescriptive document signed by 

the metrological Institutes to mutually recognize the validity of their calibrations 

(MRA) (MRA), it is specified: ―If, as a result of a key comparison, a significant 

unresolved deviation from the key comparison reference value persists for the standard 

of a particular participating institute, the existence of this deviation is noted in 

Appendix C. ... In this case, the institute has the choice of either withdrawing from 

Appendix C one or more of the relevant calibration and measurement services or 

increasing the corresponding uncertainties given in Appendix C‖, where Appendix C is 

the database of the calibration services of the NMI (the expression ―significant 

unresolved deviation from the key comparison reference value‖ means ‗an inconsistency 

with respect to‘). 

 

4.4. Traceability 

 

This term is defined as the ―property of a measurement result whereby the result can be 

related to a reference through a documented unbroken chain of calibrations, each 

contributing to the measurement uncertainty” (VIM3). It ―requires an established 

calibration hierarchy‖ and, since each calibration contributes to measurement 

uncertainty, the latter always increases while descending the ladder of metrological 

hierarchy. In metrology the term does not only mean ensuring to trace back to the origin 

by knowing the path, but has also a quantitative qualification. 

 

In principle, traceability does not mean that a step of the metrological ladder should 

necessarily be compatible with the next. However this is desirable. 

 

Two National Metrology Institutes cannot be said to be traceable with each other, since 

there is no hierarchy among them (for the standards not obtained from another NMI). 

They ensure, at the top of the ―traceability chain‖ (VIM3), the relationships between 

them called ―degree of equivalence‖ (MRA), by means of inter-comparisons, formally 

setup in the frame of the MRA, called ―key comparisons‖—see Section 4.7. 

 

4.5. The Error and Uncertainty Approaches 

 

An underpinning basic concept of science, and hence of measurement science, is that, 

due to imperfect knowledge of the observed phenomena, the numerical data that are the 

outcomes of measurement are affected by errors. Irrespective of the reasons that are the 

causes of these errors, the resulting dispersion of the measured numerical values that is 

generally observed is interpreted as evidence of the imperfect knowledge. 

 

Thus, the dispersion of the measured values introduces an uncertainty in the measure of 

the observed phenomena. Uncertainty associated with data is specified according to 

models that are different according to the underpinning assumptions, which must 

adequately match the characteristics of the observed phenomena or measurement 

process. 

 



PHYSICAL METHODS, INSTRUMENTS AND MEASUREMENTS - Mathematical And Statistical Tools In Metrological 
Measurements - Franco Pavese 
 

 

©Encyclopedia of Life Support Systems (EOLSS) 

Uncertainty cannot be determined, but only estimated with a certain ‗confidence‘ or 

‗degree of belief‘. This estimate is, together with assigning values to measurement 

results, the most fundamental aim and task of metrology. 

 

The definitions of uncertainty and their use are studied since the times of Gauß and are 

the subject matter of statistics. Information in this respect can be found also in several 

chapters of the EOLSS, e.g. (Viertl 2003a, 2003b, 2003c, Mari 2012). A restricted set of 

them is also used in metrology, e.g. (Rossi 2008). For example, probability theory is 

almost exclusively considered, while possibility theory is not (nor data ―imprecision‖ or 

―measurement inexactness‖); interval-related statistical techniques are not either 

(Kreinovich 2008). On the other hand, different specific approaches have been 

developed, namely in GUM (GUM). 

- 

- 

- 
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