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Summary 

 

There has been tremendous effort in the development of smart structures in the past 
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decades due to the rapid development of sensor and actuator technology. A smart 

structure has essentially two main systems, namely health monitoring system and 

vibration control system, in addition to the concerned civil engineering structure. Health 

monitoring system is used to detect any possible damage and/or deterioration while 

vibration control system is used to suppress the vibration of a structure for safety and 

serviceability consideration. Health monitoring system includes data acquisition system, 

identification algorithm, diagnosis and prognosis system. Data acquisition system 

records structural response (usually acceleration) for the identification algorithm to 

estimate some key parameters, such as modal frequencies or stiffnesses of the structure. 

By using this result, the diagnosis system determines any possible damage, its location 

and severity. Finally, the prognosis system estimates the possible consequences of the 

identified damage. On the other hand, there are several types of vibration control 

systems: passive, active and semi-active control system. Passive control system 

suppresses structural vibration by base isolation or energy dissipating mechanism 

without using any sensory system. Active or semi-active control system includes data 

acquisition system and controller algorithm. The measured response is used to compute 

the feedback by the controller. An active control system applies feedback force through 

an actuator system while a semi-active control system applies feedback to adjust in a 

real time manner the variable damping and/or stiffness properties of some advanced 

devices installed in a structure. 

 

In this chapter, we focus on the algorithms for both health monitoring and vibration 

control system. First, we present the fundamental concepts of system identification, 

including definition of input-output relationship, modal identification, model updating 

and model identifiability, etc. Then, we introduce a number of well-known parametric 

identification methods using measured response and they are categorized into non-

Bayesian and Bayesian types. Next, an iterative model updating procedure using 

identified modal parameters of a structure will be presented. Afterwards, we will 

introduce another level of system identification problem, which is the selection of a 

suitable model class for parametric identification. Three well-known methods are 

presented: Akaike information criterion, Bayesian information criterion and Bayesian 

asymptotic expansion. In the second half of this chapter, we will focus on vibration 

control for civil engineering structures. Passive control, active control and semi-active 

control strategy will be introduced. Finally, two popular control algorithms, namely the 

linear quadratic Gaussian regulator and the sliding mode control, will be introduced. 

Their application in conjunction with the clipped optimal controller for semi-active 

control is also presented. 

 

1. Introduction 

 

To fully exploit new technologies for response mitigation and structural health 

monitoring, improved design methodologies are desirable (Kozin and Natke 1986; 

Unbehauen and Rao 1987; Natke 1988; Farrar and Doebling 1997; Doebling et al. 1998; 

Ivanović et al. 2000; Chang et al. 2003; Sohn et al. 2003; Kerschen et al. 2006; 

Kołakowski 2007). The design of smart structures involves system identification and 

vibration control. In this chapter, we will introduce fundamental concepts and some of 

the well-known algorithms for these two areas. First, we present the fundamental 

concepts of system identification, including definition of input-output relationship, 
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modal identification, model updating and model identifiability, etc. Then, a number of 

well-known parametric identification methods are introduced using measured response 

and they are categorized into non-Bayesian and Bayesian type. Next, an iterative model 

updating procedure using identified modal parameters of a structure is introduced. 

Afterwards, we will introduce another level of system identification problem, which is 

the selection of a suitable model class for parametric identification. Three well-known 

methods are presented: Akaike information criterion, Bayesian information criterion and 

Bayesian asymptotic expansion. Then, the second part of this article will be focused on 

structural vibration control. The basic concepts of passive, active and semi-active 

control will be introduced. Finally, the well-known linear quadratic Gaussian regulator 

and the sliding mode control algorithm will be derived. The application with the clipped 

optimal controller for semi-active control system is also introduced. 

 

2. System Identification in Structural Engineering  

 

Figure 1 shows the general relationship of different structural dynamics problems. In 

structural engineering, our concern is structural systems, such as buildings, bridges and 

towers. To estimate the performance of a structure, we need to construct a mathematical 

model, e.g., the mass, damping and stiffness matrices in the linear case. From this 

mathematical model, one can proceed with an eigenvalue problem to compute the 

natural frequencies and mode shapes of the structure. On the other hand, one can 

proceed with response calculation or random vibration analysis to assess the 

performance of the structural design. Furthermore, one can go from eigenvalues and 

eigenvectors for response calculation or random vibration analysis and this is called 

modal analysis. These are forward problems in structural dynamics. On the other hand, 

the backward or inverse problems receive more and more attention in recent decades. 

By using the measured structural response, one can estimate the modal frequencies and 

mode shapes and this process is called modal identification. One can also estimate the 

model parameters in the structural model using measured structural response and/or 

identified modal parameters and this process is called model updating. 

 

 
 

Figure 1. Relationship among different structural dynamics problems 
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2.1. Basic Concepts 

 

2.1.1. System 

 

Figure 2 shows the block diagram of a system and it consists of the input, output and the 

plant. In structural identification, the input usually is the excitation to the structure and 

the output is the structural response. The plant is the structure of concern. There are two 

levels of system identification problems, namely parametric identification and model 

class selection. The parametric identification problem is to identify unknown 

parameters given a class of mathematical models for a particular structural system. The 

second level deals with the selection of a suitable class of mathematical models for 

parametric identification. The second level is significantly more difficult but also more 

crucial than the first level since parametric identification results will be by no means 

meaningful if one fails to obtain a suitable class of models. However, due to the 

difficulty of this problem, it is usually determined by user‘s judgment. 

 

 
 

Figure 2. Schematic diagram of systems 

 

Development of system identification techniques began earlier in aerospace engineering 

and electrical engineering (Eykhoff 1974; Ljung 1977; Peterka 1981; Soderstrom and 

Stoica 1989; Unbehauen and Rao 1990; Peeters and De Roeck 2001). Some of the 

methods were migrated to structural engineering problems but it is not a straight-

forward exercise due to some unique features in civil engineering structural systems. 

One main difficulty comes from the large scale of civil engineering structures. 

Furthermore, constitutive relationship of some materials, such as concrete or soil, can be 

very complex. Therefore, modeling error is large when comparing with aerospace 

engineering, electrical or mechanical engineering problems. As a result, model class 

selection in civil engineering problems will be more crucial compared with other 

engineering or science disciplines. Furthermore, due to the large scale, there are usually 

a large number of uncertain parameters to be identified. In this case, well-posedness will 

be an issue of concern. In other words, there may be multiple (finite or infinite) optimal 

solutions. 

 

Another difficulty is due to the fact that the input is usually unknown. In the context of 

structural dynamics, the input is the excitation that includes self weight of the structure, 

ground motion, wind pressure field and other moving loads (e.g., force generated by 

moving people or vehicles). Except for the self weight and ground motion, the others 

are difficult to measure. Therefore, system identification problems in structural 

dynamics usually require treatment of unmeasured input. This is in contrast to some 

other disciplines that the input can be measured or even be controlled by the user. 
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2.1.2. Model Identifiability 

 

System identification is an inverse problem so ill conditioning is inevitably an important 

issue for consideration. In parametric identification, there may exist one, multiple (but 

finite) or infinite values of the model parameters to give identical system output. 

Therefore, given one set of measured system output, it is not necessary to give the 

unique solution of the model parameters. This issue was discussed in Ljung and Glad 

(1994) and Katafygiotis and Beck (1998). This is important especially for large number 

of uncertain parameters because it is difficult to visualize. Given a set of input-output 

measurements of the underlying system D, use mod 0( ; )S Dθ  to denote the set of all 

possible model parameters which give the same model output as the model associated 

with 0θ . 

 

A parameter l  of θ  is model-identifiable at *
θ  for model class C if there exists a 

positive number l  such that 

 

lllDS   *

0mod );(θθ  or *
l l   (1) 

 

In other words, *
l  is uniquely specified within a neighborhood of each of its possible 

values by D. There are three main categories of identifiability: 

 

1. A parameter l  of θ  is globally model-identifiable at *
θ  for model class C if 

 
*

mod 0( ; ) l lS D    θ θ  (2) 

 

In other words, *
l  is uniquely specified by D. If l  is globally model-identifiable at *

θ , 

then it is also model-identifiable at *
θ . 

 

2. A parameter l  of θ  is locally model-identifiable at *
θ  for model class C if it is 

model-identifiable but not globally model-identifiable. 

 

3. A parameter l  of θ  is model-unidentifiable if it is not model-identifiable. 

 

2.2. Some Well-Known Parametric Identification Methods Using Measured 

Response 

 

Parametric identification of civil engineering structures is a challenging task that has 

attracted extensive research efforts over the latest decades (Goodwin and Payne 1977; 

Ljung 1987; Imai et al. 1989; Soderstrom and Stoica 1989; Sinha and Rao 1991; 

Johansson 1993; Ghanem and Shinozuka 1995; Alvin et al. 2003; Kijewski-Correa et al. 

2008). Comprehensive literature reviews (Bekey 1970; Astrom and Eykhoff 1971; 

Peeters and DeRoeck 2001; Deistler 2002; Gevers 2006; Kerschen et al. 2006) studied 

the development of this flourishing research area. Numerous methods have been 
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proposed for parametric identification using measured response (Kozin and Natke 1986; 

Lew et al. 1993; Doebling et al. 1998; Petsounis and Fassois 2001; Maia and Silva 2001; 

Soderstrom 2003; Giraldo et al. 2009). In this section, we focus on non-Bayesian 

parametric identification techniques. Three representative methods, including the 

recursive least squares approach, the extended Kalman filter (EKF), and the 

eigensystem realization algorithm (ERA), are presented in the following subsections. 

 

2.2.1. Recursive Least Squares Approach 

 

Recursive least squares approach is an iterative algorithm to minimize the squared 

residual between the measurements and the model outputs (Ljung 1977; Soderstrom et 

al. 1978; Ljung and Soderstrom 1983; Solo 1980; Zhou and Cluett 1996; Sharia 1998; 

Young 2011). It is an extension of the ordinary least squares approach in the sense that 

the solutions are obtained in an efficient iterative manner (Durbin and Watson 1950; 

Ljung and Soderstrom 1983). Nevertheless, in contrast with the ordinary least squares 

approach, the recursive least squares approach is an online estimation technique and 

does not require to store or reprocess the entire set of data at every time instant. Due to 

its computation efficiency and simplicity, the recursive least squares approach is a 

popular parametric identification technique in the 20
th

 century (Bekey 1970; Astrom and 

Eykhoff 1971; Caravani et al. 1977; Young 1984). In the following, its identification 

procedure is introduced. 

 

Consider a dynamical system that is parameterized by N  model parameters 

T
1[ ,..., ]N
 θ . The objective here is to use discrete response measurement for the 

identification of these model parameters. Assume that there exists a contaminated linear 

relationship between the measurement 
No

n y R  and the model parameters: 

 

, 1,2,...,n n n n N  y P θ ε  (3) 

 

The measurement noise 
No

n ε R  is modeled as zero-mean discrete Gaussian white 

noise with covariance matrix T[ ]n n n
E ε ε Σ . The transformation matrix 

N No
n


P R  is 

used to describe this relationship between the measurement ny  and the model parameter 

vector θ . For example, consider an autoregressive (AR) model:

 1 1 2 2n n n nx a x a x     . In this case, the measurement is n nxy , the transformation 

matrix is 1 2[ , ]n n nx x P  and the model parameter vector is T
1 2[ , ]a aθ . 

 

The recursive least squares algorithm identifies the model parameters by minimizing a 

weighted sum of squared residuals between the measurements and corresponding 

prediction by the model. This algorithm identifies the optimal parameter vector nθ  

based on measurements up to the n
th

 time step in a recursive manner. The cost/objective 

function can be written for the n
th

 time step in the following form: 

 

   
T 1

,

1

( )
n

n n k k k n k k nk
k

J  



  θ y P θ Σ y P θ  (4) 
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where the variables , , 1, 2,..., ,n k k n   are used to assign differential weighting to 

different data points. The idea is to gradually fade out the contribution of data points far 

away from the current time step. One popular choice is given as follows (Ljung and 

Soderstrom 1983; Lozano 1983; Kulhavy and Zarrop 1993): 

 

1 1
,

,    1

1,

n n k
n k

k n

k n

  
    

 


 (5) 

 

where 1n   is called the forgetting factor so it is clearly that the weightings ,n k  

decrease as n k  increases. Selection of the forgetting factor, and thus the weightings, 

is a trade-off between the parameter tracking capability and the robustness against noise 

of the algorithm. One popular choice is the exponential weighting function 
( ) log  

,
n k n

n k e
 

  with 0 1n   for all n (Johnstone et al. 1982). Another widely used 

form is to set the forgetting factor as a constant with value between 0 and 1 (Zarrop 

1983). Hence, the weighting function is expressed as , 0
n k

n k    so the weightings are 

reduced by a factor of 0  in each time step. 

 

The optimal model parameter vector at the n
th

 time step ˆ
nθ  can be determined by 

minimizing the objective function in Eq. (4) with respect to nθ : 

 

1 T 1
,

1

ˆ arg min
n

n n n k k kk
n k

J  



  
θ

θ R P Σ y  (6) 

 

where the matrix nR  is given by: 

 

T 1 T 1
, 1

1

n

n n k k k n n n nk n
k

   




  R P Σ P R P Σ P  (7) 

 

By using Eqs. (5) – (7), the following recursive formula can be obtained to update the 

model parameters at each time step: 

 

   1 T 1 T 1
1 1 1

ˆ ˆ
n n n n n n n n n n n n nn n 

  
  

      
 

θ R R P Σ P θ P Σ y θ G y P θ   (8) 

 

where the estimator gain matrix nG  is given by: 

 
1 T 1

n n n n
 G R P Σ  (9) 

 

Finally, in order to avoid direct computation of the inverse 1
n


R , the matrix inversion 

lemma    
11 1 1 1 1 1
        A BCD A A B C DA B DA  is utilized to obtain the 
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following recursive formula for 1
n


R : 

 

   
1 1

1 T 1 1 1 T 1 T 1
1 1 1 1n n n n n n n n n n n n n nn n   

 
     

   
     
  

R R P Σ P I R P Σ P R P P R  (10) 

 

The recursive least squares parametric identification procedure can be summarized as 

follows: 

   (1) Start with an initial model parameter vector 0θ̂  and matrix 1
0


R ;  

   (2) Calculate 1
n


R  by Eq. (10); 

   (3) Calculate the estimator gain matrix nG  by Eq. (9);  

   (4) Compute the optimal model parameter vector ˆ
nθ  by Eq. (8);  

   (5) Repeat step (2) to (4) for the next time step.  

 

2.2.2. Extended Kalman Filter (EKF)  

 

Extended Kalman filter (EKF) (or Kalman-Schmidt filter) was developed on the 

foundation of Kalman filter for the parametric identification of dynamical systems 

(Bellantoni and Dodge 1967; Jazwinski 1970; Schmidt 1981; Grewal and Andrews 

1993; Brown and Hwang 1997; Simon 2006). Kalman filter was developed to estimate 

the state vector of linear systems (Kalman 1960; Kalman and Bucy 1961; Sorenson 

1985; Ruymgaart and Soong 1988). It propagates the first two statistical moments of the 

state vector by predicting and filtering alternately at each time step. Kalman filter is the 

optimal filter for state estimation of linear systems subjected to Gaussian excitation. The 

EKF extends the Kalman filter to handle also slightly nonlinear systems. Furthermore, 

an augmented state vector can be defined to extend the state vector to include also the 

model parameters. In such a way, the model parameters can be identified with the state 

estimation process of Kalman filter. Recognizing the power of EKF on parametric 

identification, it has been widely used in many different disciplines (Hoshiya and Saito 

1984; Dhaouadi et al. 1991; Lin and Zhang 1994; Brown and Hwang 1997; Yun and 

Lee 1997; Einicke and White 1999; Chui and Chen 2009; Grewal and Andrews 2010; 

Hoi et al. 2010). 

 

Some literatures categorized the EKF as a Bayesian updating process (Jazwinski 1970; 

Chen 2003; Yuen 2010a) because the algorithm can be derived under the Bayesian 

probabilistic framework. In addition, the EKF shared a remarkable feature with 

Bayesian approaches that they can determine the optimal values of the model 

parameters as well as their associated uncertainties. In this section, we follow the 

original derivation (Kalman 1960; Kalman and Bucy 1961) which is formulated without 

adopting the Bayesian perspective. The identification procedure is presented as follows.  

 

Use 
T T T[ , ]X x x  to denote the state vector that consists of the generalized 

displacement and velocity vector. Then, the well known state-space representation of an 

dN  degrees of freedom (DOFs) linear dynamical system can be written as follows:  

 

1 d dn n n  X A X B F  
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n n n y CX ε  (11) 

 

where 
2 2d d

d
N N

A R  is the state matrix; 
2 d F

d
N N

B R  is the force distributing matrix; 

2o dN N
C R  is the observation matrix; 

2 dN
n X R  is the state vector at the n

th
 time 

step; FN
n F R  is the input excitation; oN

n y R  is the measured model output and 

oN
n ε R  is the measurement noise. The excitation F  and measurement noise ε  are 

modeled as independent discrete Gaussian white noise with zero mean. Their covariance 

matrices satisfy: 

 
T
' 'n n F nnE   

 
F F Σ  , T

' 'n n nnE   
 
ε ε Σ  and T

'n nE   
 
F ε 0  (12) 

 

where 'nn  denotes the Kronecker delta. 

 

Kalman filter propagates in estimating the state vector by predicting and filtering 

alternately at each time step. Given the measurement set 1 2{ , ,..., }n nD  y y y , the 

predicted state vector can be calculated by: 

 

   1| 1 d d d |
ˆ ˆ| |n n n n n n n n nE D E D    X X A X B F A X   (13) 

 

where the symbol  |
ˆ |m n m nE DX X

 

is defined for notation convenience only. Based 

on Eqs. (11) and (13), the covariance matrix of the prediction error can be determined: 

 

  
T

T T
1| 1 1| 1 1| d | d d d

ˆ ˆ ˆ ˆ|n n n n n n n n n n n FE D    
     
  

Σ X X X X A Σ A B Σ B   (14) 

 

Again, the symbol   
T

| | |
ˆ ˆ ˆ |m n m m n m m n nE D   

  
Σ X X X X

 

is defined for notation 

convenience only. When a new data point 1ny  is available, the data set is enlarged to 

1 1 2 1{ , ,..., }n nD   y y y  and the state vector can be filtered with the information carried 

by the new data point. The filtered state vector is given by (Kalman 1960; Jazwinski 

1970): 

 

   1 T 1
1| 1 1 1 1| 1 1| 1| 1

ˆ ˆ ˆ ˆ|n n n n n n n n n n nE D 
 

          X X Σ Σ X C Σ y   (15) 

 

where the associated uncertainty of the filtering error  1 1| 1
ˆ

n n n  X X  has the 

following form: 

 

    
T 1

1 T
1| 1 1 1| 1 1 1| 1 1 1|

ˆ ˆ ˆ ˆ|n n n n n n n n n n nE D 




         
     
  

Σ X X X X Σ C Σ C  (16) 

 

By using Eqs. (15) and (16), the filtered state vector expression can be rewritten in the 
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following form (Jazwinski 1970; Simon 2006):  

 

 nnnnnnnn |111|11|1
ˆˆˆ

  XCyGXX   (17) 

 

where the Kalman gain matrix at the  1n 
th

 time step is given by: 

 
T 1

1 1| 1
ˆ

n n n 


  G Σ C Σ   (18) 

 

Equation (17) provides a similar form as Eq. (8) in the recursive least squares approach. 

 

The Kalman filter estimation process starts from an initial prescribed state vector 0|0X̂  

(e.g., zero vector) and covariance matrix 0|0Σ̂ , which is usually a diagonal matrix with 

large diagonal elements. The predicted state vector 1|0X̂  can be determined by Eq. (13) 

and the covariance matrix of the prediction error 1|0Σ̂  can be calculated by Eq. (14). 

When the first data point 1y  is available, the filtered state vector 1|1X̂  as well as its 

associated covariance matrix 1|1Σ̂ can be obtained by Eq. (17) and Eq. (16), respectively. 

This finishes one cycle of the predicting and filtering process. Then, the process will be 

repeated for the subsequent time steps. It can be seen explicitly from the estimation 

equations that the noise covariance matrices affect the performance of the algorithm. 

Previous studies demonstrated that arbitrary choice of the noise characteristics may lead 

to biased estimation (Fitzgerald 1971; Reif et al. 1999). To tackle with this problem, 

Ljung (1979), Valappil and Georgakis (2000) and Yuen et al. (2007a) proposed 

computational strategies for proper selection of the noise parameters. 

 

The extended Kalman filter (EKF) starts with defining the augmented state vector, 

which extends the state vector to include also the model parameters: 

 
T T T T[ , , ]χ x x θ  (19) 

 

where the model parameter vector T
1 2[ , ,..., ]N
  θ  contains N  variables to govern 

the dynamical system. A state-space representation for general linear/nonlinear systems 

can be written as: 

 

 1 ,n n n  pχ χ F  

 n n n qy χ ε   (20) 

 

where  p  and  q  are vector functions with dimension d2N N  and oN , 

respectively. The excitation F  and measurement noise ε  are modeled as zero-mean 

discrete Gaussian white noise with covariance matrices 
T
' 'n n F nnE   

 
F F Σ  and 

UNESCO-E
OLS

S

SAMPLE
 C

HAPTERS



CIVIL ENGINEERING - System Identification And Control In Structural Engineering - Ka-Veng Yuen and Sin-Chi Kuok 

©Encyclopedia of Life Support Systems (EOLSS)  

T
' 'n n nnE   

 
ε ε Σ , respectively. Furthermore, the excitation and measurement noise are 

assumed to be statistically independent.  

 

The dynamical system in Eq. (20) can be linearized locally utilizing Taylor expansion: 

 

1 d, d,n n n n n n   χ A χ B F p  

n n n n n  qy C χ ε   (21) 

 

where the state, force distributing and observation matrices are given by 

 
d,

ˆ ,|

,n n
n

n
n n n n 





χ χ F 0

χ F
A

χ

p
, 

 
d,

ˆ ,|

,n n
n

n
n n n n 





χ χ F 0

χ F
B

F

p
and 

 

ˆ | 1

n

n

n
n n n 






q

χ χ

χ
C

χ
, 

respectively. Furthermore, the vector functions np  and nq  are defined to compensate 

the linearization error:   nnndnnn |,|
ˆ

~
,ˆ~ χA0χ  pp  and   1|1|

ˆ
~

ˆ~
  nnnnnn χCχqq . 

 

The prediction and filtering equations for EKF are given, in analogy to Eqs. (14)-(18), 

as follows: 

 

 1| 1 d, |
ˆ ˆ|n n n n n n n nE D   χ χ A χ p   

T T
1| d, | d, d, d,

ˆ ˆ
n n n n n n n F n  Σ A Σ A B Σ B   

 nnnnnnnnnn |11111|11|1
ˆ

~~~
ˆˆ

  χCyGχχ q   

 
1

1 T
1| 1 1| 1 1

ˆ ˆ
n n n n n n




     Σ Σ C Σ C   

T 1
1 1| 1 1

ˆ
n n n n 


   G Σ C Σ  (22) 

 

Following the same estimation procedure as the Kalman filter, the augmented state 

vector and its associated covariance matrix can be obtained. Consequently, the model 

parameters and its associated uncertainty can be determined as part of the augmented 

state vector. 

 

2.2.3. Eigensystem Realization Algorithm (ERA) 

 

Eigensystem realization algorithm (ERA) identifies the minimal state-space realization 

of a system using pulse response measurement (Silverman 1971; Juang and Pappa 1985). 

It was developed under the realization theory (Ho and Kalman 1966; De Schutter 2000). 

Using pulse response measurements, the Markov parameters of the system can be 

calculated and hence the Hankel matrix can be constructed. The Hankel matrix is 

factorized via singular value decomposition and the minimal state-space realization can 

be determined. This algorithm has been widely applied to system identification with 

field test data. Successful applications demonstrated its efficacy (Pappa and Juang 1988; 

Lus et al. 1999; Qin et al. 2001; Lus et al. 2002; Brownjohn 2003; Siringoringo and 

Fujino 2008; Caicedo 2011). In the following, the key identification procedure of ERA 

is presented.  
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Consider the state-space representation of an dN  DOFs linear dynamical system with 

oN  DOFs observation:  

 

1 d dn n n  X A X B F

 

 

n n n y CX DF   (23) 

 

where the state vector 
2T T T d[ , ]

N
n n n X x x R includes the displacement and velocity 

vector at the n
th

 time step; FN
n F R  is the excitation vector at the n

th
 time step; and 

oN
n y R  is the model output vector at the n

th
 time sep. The state-space model matrices 

dA , dB , C , D  are the system, force distributing, observation and direct transmission 

matrix, respectively. The quadruple set ( , , , )d dA B C D  is called the state-space 

realization of the system and the objective of ERA is to determine the minimal state-

space realization. 

 

By using Eq. (23), the model output can be rewritten as: 

 
1

1
d 0 d d

0

n
n n k

n k n

k


 



  y CA X CA B F DF   (24) 

 

Define the response matrix as follows: 

 
( )(1) (2), ,.., , 0,1,2,...
NF

n n n n n  
 

Y y y y  (25) 

 

where ( )i
ny  is the model output at n

th
 time step subjected to excitation 

 
T

0 0 0 1 0 0,..., , , ,...,F  (unity at the i
th

 component) and n F 0 , 0n   with zero initial 

condition 0 X 0 . Then, Eq. (24) gives the following relationship: 

 

0 Y D  

1 d d ,n
n n  Y CA BM  0,1, 2,...n   (26) 

 

where d d , 0,1,2,...,n
n n CA BM  are called the Markov parameters. Then the Hankel 

matrix can be constructed as follows: 

 

 

1 12

1 2 2

1 21 1 1 2

n n n s

n n n s

n s n s n s s

n

  

  

     

 
 
 

  
 
 
 

M M M

M M M
H

M M M

 (27) 

 

where the choice of the values of 1s  and 2s  depends on the number of significant modes 
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contributing to the structural response. Details can be found in Juang and Pappa (1985) 

and Dohner (1994). For identification purpose, this matrix can be estimated using the 

measured pulse response due to Eq. (26): 

 

 

1 2 2

2 3 12

1 11 1 1 2

, 0

n n n s

n n n s

n s n s n s s

n n

  

   

     

 
 
 

  
 
 
 

Y Y Y

Y Y Y

Y Y Y

H  (28) 

 

Substituting Eq. (26) to this equation, the Hankel matrix can be factorized as follows: 

 

  L d R , 0nn n AH H H  (29) 

 

where LH  and RH  are the observability matrix and controllability matrix (Juang et al. 

1992): 

 

d

L

11
d
s 

 
 
 
 
 
  

C

CA

CA

H  and 
12

R d d d d d

s  
 
B A B A BH  (30) 

 

In order to determine these two matrices, singular value decomposition is applied to the 

Hankel matrix with 0n  : 

 

  T0  USVH  (31) 

 

where the matrices 1 o 1 os N s N
U R  and 2 F 2 Fs N s N

V R  are unitary. The singular value 

decomposition can be proceeded using the function ‗svd‘ in MATLAB (MATLAB 

2002). The matrix 1 o 2 Fs N s N
S R  contains the singular values of  0H  on its diagonal 

entries and it can be partitioned as 
s

0

 
  
 

S 0
S

0 S
 where 

2 2d d
s

N N
S R  and 

   2 21 o d 2 F d
0

s N N s N N  
S R . By using this partition, Eq. (31) can be rewritten as: 

 

   
T

s s
L R s 0 T

0 0

0
  

    
    

S 0 V
U U

0 S V
H H H  (32) 

 

For noise-free cases, 0 S 0 and the rank of S  is given by   drank 2NS . Therefore, 

  T
s s s0  U S VH . For general noisy measurements, the values of the diagonal entries in 

0S  are closed to zero (Zeiger and McEwan 1974). Therefore, the Hankel matrix  0H  
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satisfies the following approximation: 

 

  T
s s s0  U S VH  (33) 

 

Then, the observability and controllability matrix can be determined as follows (Juang 

and Pappa 1985): 

 
1/2

L s s U SH  

1/2 T
R s s S VH  (34) 

 

By using Eq. (30), one can extract the matrix dB  from the first FN  columns of the 

controllability matrix RH  and the matrix C  from the first oN  rows of the observability 

matrix LH . 

 

Finally, the state-space system matrix dA  can be determined by taking 1n   in Eq. 

(29): 

 

   1/2 T 1/2
d L R s s s s1 1    A S U V SH H H H  (35) 

 

where the superscript   denotes the generalized inverse of a matrix. Furthermore, the 

modal parameters of the system (i.e., the modal frequencies, damping ratios and mode 

shapes) can be obtained by solving the eigenvalue problem with the identified system 

matrix dA .  

 

The identification procedure of ERA can be summarized as follows:  

(1) Construct the Hankel matrices  0H  and  1H  with measured pulse response             

using Eq. (28);  

   (2) Compute the matrix D  by Eq. (26); 

   (3) Apply singular value decomposition to  0H  to obtain s s s,   and U S V ;  

   (4) Compute the observability matrix LH  and controllability matrix RH  using Eq. 

(34); 

   (5) Extract the matrices dB  and C  from LH  and RH  by Eq. (30); 

   (6) Compute dA  using Eq. (35);  

   (7) Solve the eigenvalue problem of dA  to obtain the modal parameters of the system. 

 

In order to improve the accuracy of the ERA algorithm with noisy measurement, Juang 

et al. (1987) proposed an alternative approach, namely the eigensystem realization 

algorithm with data correlation (ERA/DC). Instead of using the measurements to form 

directly the Hankel matrix, the ERA/DC method uses the data correlation matrices 

(derived from the original Hankel matrix). This method was shown effective in reducing 

the bias due to measurement noise (Juang and Pappa 1986; Juang 1987). Significant 

research efforts have been devoted to improve this algorithm (Juang 1997; De Callafon 
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et al. 2008; Chiang and Lin 2010). 

 

On the other hand, ERA or ERA/DC were originally derived to handle pulse response 

data. However, the ERA or ERA/DC method can also handle response of broad band 

excitation which is usually encountered in ambient vibration survey (Doebling et al. 

1998). In such case, preprocessing of the measured response is necessary. One popular 

approach is to use the random decrement technique to compute the pulse response from 

the broad band response measurement (Vandiver et al. 1982). Then, ERA or ERA/DC 

can be applied for parametric identification. 

- 

- 

- 
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