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Summary 
 
When the variables defining volumetric water content–matric potential relationships are 
considered, the matric potential element is the most difficult to understand. This article, 
therefore, briefly reviews the different potentials that are important in the retention of 
soil water. Most of our discussion will be at the macroscopic level at which 
measurements are generally being made. To explain the nature of the matric potential 
more fully, however, we will defer to the microscopic level and show potential 
distributions in the liquid phase adjacent to a solid particle in case of a convex 
gas/liquid interface. Even when an adsorptive part is present, measured matric potential 
values are nevertheless often referred to as “pressure potential” or “pressure head” 
values. Although this usage is, strictly speaking, incorrect it has been entrenched in our 
scientific jargon for many years. The direct determination of volumetric water content–
matric potential relationships is presented in a generalized manner. The more commonly 
used methods are discussed briefly and the most popular parametric models to describe 
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these relationships are introduced. Finally, we briefly discuss property-transfer models 
and inverse methods of determining water content–matric potential relationships. 
 
1. Introduction 
 
The relation between a fluid’s content or saturation and its associated matric potential is 
one of the fundamental hydraulic properties of a porous medium, the other being the 
hydraulic conductivity–water content relation. These two relations are needed to predict 
water flow and chemical transport in porous media, such as soils and the vadose zone, 
for different boundary and initial conditions. 
 
If two fluids are present, one fluid will be attracted more strongly to the solid phase 
particles than the other will. The former fluid is referred to as the wetting fluid, the latter 
the non-wetting fluid. If three fluids are present, one of them is characterized by 
intermediate-wetting characteristics. In the soil science literature, the fluids considered 
are usually water and air. For most soils, water is the wetting fluid and air the non-
wetting fluid. Under certain conditions, however, soils may become hydrophobic, in 
which case air is the wetting and water the non-wetting fluid. The relation between 
water content and matric potential is referred to by various names, such as water 
retention curve, water characteristic curve, water content–capillary pressure curve, and 
capillary pressure–saturation relation. The function relates a capacity factor (the water 
content) to an intensity factor (the energy state of the soil water). The energy state is 
expressed by terms such as suction, tension, capillary pressure or capillary pressure 
head, matric potential, soil water pressure head, and matric pressure head. For 
unsaturated soils, values for suction, tension, and capillary pressure (head) are positive, 
while those for matric potential and pressure head are negative. 
 
We hold the view that the soil water matric potential is the result of pressure and 
adsorptive forces. If clay particles are present, the adsorptive forces include osmotic 
forces resulting from the high concentration of constrained cations in the diffuse double 
layer associated with the negative charge of the solid phase. We will treat the matric 
potential as a component of the total mechanical potential, the latter including the 
gravitational potential. The spatial gradient of the total mechanical potential is known to 
be the driving force causing water movement in soils. 
 
2. Concept of Capillarity 
 
The Young and Laplace equation, which relates the pressure difference ΔP across the 
gas/liquid interface in a unsaturated porous medium with its mean radius of curvature rc, 
can be expressed as 
 

l g
c

2 2 cosP P P
r r
σ σ β

Δ = = = −  (1) 

 
where σ is the surface tension (N.m–1), β is the contact angle between the liquid and the 
solid phase, r is the maximum liquid-filled pore radius (m) for the unsaturated porous 
medium (by convention r < 0 if the radius of curvature is in the gas phase, and > 0 if in 
the liquid phase), Pl is the water pressure (N.m–2 or Pa), and Pg is the gas phase pressure 
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(N.m–2 or Pa). Outside the region of influence of the adsorptive forces the matric 
pressure head (matric potential on a weight basis), hm (m), is defined by 

m
l

Ph
d g
Δ

=  (2) 

 
where dl is the density of water (kg m–3) and g is the gravitational field strength (N kg–1). 
 
3. Matric Potential 
 
It should be noted that Eq. (2) no longer applies if the water molecules are under the 
influence of adsorptive forces: in other words, when water exists as thin films attached 
to the solid surfaces of soil particles. In those cases hm is the result of the negative 
adsorptive potential and the positive pressure potential. (Eq. (1) still applies across the 
gas/liquid interface: see Section 5.) Our measurement techniques, however, do not 
distinguish between pressure and adsorptive forces, and the methods described in this 
chapter always yield the matric potential or matric head. This is usually referred to as hm, 
albeit not always defined by Eq. (2), depending on whether or not adsorptive forces play 
a role. It should also be noted that under normal field conditions Pg = 0 (atmospheric 
pressure). If it does not, a correction should be made for the added gas pressure as it is 
not a part of the matric potential. 
 
4. Relations Between Potentials on a Mass, Volume, and Weight Basis 
 
In general terms, let E be the potential or potential energy (J) of a volume V (m3) of a 
fluid, so that 
 

-3 -2E (J.m  or N.m  or Pa)
V

ψ =  

 
Hence, energy per unit volume has the same units as pressure. If df (kg.m–3) is the 
density of the fluid, then the mass of fluid volume V is dfV (kg). Therefore, the potential 
energy per unit mass is 
 

-1

f

E (J.kg )
d V

φ =  

 
Finally, for a gravitational field strength g (N.kg–1), the weight of fluid volume V is 
equal to dfgV (N). Hence the potential energy per unit weight is 
 

f

E (m)
d gV

Ω =  

 
For most soil water applications, the use of energy per unit weight—referred to as 
head—is the more convenient choice because it results in units of length. The matric 
head is thus expressed as the height of a fluid column of a given density. The fluid is 
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usually water at the ambient temperature of the soil water system. The three potentials 
are related as 

f f
f f

E E Ed d g
V d V d gV

ψ φ
⎧ ⎫ ⎧ ⎫⎪ ⎪ ⎪ ⎪⎧ ⎫= = = = = Ω⎨ ⎬ ⎨ ⎬ ⎨ ⎬

⎩ ⎭ ⎪ ⎪ ⎪ ⎪⎩ ⎭ ⎩ ⎭
 

 
or 
 

f fd d gψ φ= = Ω                                                           (3) 
 
Eq. (3) can be used to make conversions between energy on a mass, a volume, and a 
weight basis. 
 
- 
- 
- 
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