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Summary 
 
Aqueducts have been used for thousands of years to transfer water long distances for 
public water supply. Ancient structures were open channels, but nowadays they may 
consist of tunnels, canals, pipelines, and siphons or any combination of these.  
 
Tunnels are used for transporting trains, automobiles, water, storm and sanitary flows, 
pedestrians, bicycles, and no doubt other items. Large ones are sometimes used for 



UNESCO – 
EOLS

S

SAMPLE
 C

HAPTERS

WATER STORAGE, TRANSPORT, AND DISTRIBUTION -  Aqueducts, Tunnels, Canals, Pipelines, Siphons, and Water 
Distribution - W. James Marold, Robert Lang, Bayard E. Bosserman, II, Garr M. Jones and Thomas M. Walski 
 

©Encyclopedia of Life Support Systems (EOLSS) 

temporary storage of storm water. 
 
Canals are the cheapest means for transporting water, but they are not protected from 
contamination or losses by leakage and evaporation, and they must follow a falling 
gradient intersection with the ground surface.  
Pipelines are protected from contamination and evaporation, and, as they are 
pressurized, they can follow rising and falling profiles. Pipes, valves, and fittings are 
made of a wide variety of materials. 
 
Two types of siphon designs have been used for both water and wastewater systems: 
head recovery siphons and inverted siphons.  Head recovery siphons are true siphons, 
but inverted siphons are technically not siphons at all. Instead, they are pressure 
pipelines designed to transport the fluid by gravity across obstacles such as valleys and 
under obstructions such as highways, railways, and bodies of water. 
 
Water distribution systems are the final step between the water source and the customer. 
They follow water treatment and furnish almost 100 per cent protection provided the 
system is always under pressure and contains a residual of a disinfectant such as 
chlorine or chlorine dioxide to guard against contamination from cross-connections or 
repairs. 
 
1. Aqueducts 
 
Aqueducts have been used for several millennia. Stone collars for what was probably 
wood pipe have been excavated in ancient Sumeria, but Rome is the first city to install 
aqueducts on a grand scale. Their first was a 16 km underground aqueduct built in 310 
BC. The first aqueduct above ground was 145 km long built in 144 BC. Eventually, 
more than 10 aqueducts carried a total of 1.6 m3 s-1 of high-quality water to the 
fastidious Romans. These stone structures were usually open conduits with relatively 
flat slopes for gravity flow, so the flow depended only on the slope and size of the 
conduit.  A small gate was used to control the release of water into the conduit. Some, 
still in use, supply water for the fountains of Rome. Two examples of more modern 
aqueducts constructed for water supply to New York City include the Old Croton 
Aqueduct and the New Croton Aqueduct.    
 
1.1 Introduction  
 
Modern water supply aqueducts include open channel canals, tunnels, siphons, and 
pipelines.  These structures may be combined in any manner to carry water for long 
distances to holding reservoirs or water treatment plants for distribution to the water 
consumers. The largest aqueduct in the world supplies southern California with nearly 
44 m3 s-1 of water carried in open concrete-lined canals from the Colorado River. The 
aqueducts used to supply water to New York City are tunnels and vary from 53 to 148 
km in length. Both systems withdraw water from storage reservoirs formed by large 
dams.  
 
1.2 Examples  
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The first major tunnel aqueduct in the United States was called the Old Croton 
Aqueduct (OCA) and completed in 1842 from the Croton River to New York City. A 
cyclopean masonry dam 14 m high was constructed across the Croton River to form a 
reservoir for water storage. An intake structure was constructed in the dam to transmit 
water to the aqueduct.  The OCA was excavated in overburden materials, so the route 
was subject to the geography of the land and the location of bedrock along the route 
thus making the alignment circuitous. The aqueduct was lined with several courses of 
brick and mortar to reduce seepage. The OCA was 65 km long, carried a normal flow of 
about 3.5m3/s, and required 5 years for construction. A bridge to support the aqueduct 
was built across the Harlem River, a major obstacle. The gradient of 0.00014 allowed 
the aqueduct to transmit the entire flow by gravity from the storage reservoir to the city. 
The aqueduct was in use for 116 years.  
 
A second aqueduct, called the New Croton Aqueduct (NCA), was built in 1895 to 
increase the capacity of the water supply to the City (See Figure 1).  It was a tunnel with 
more direct alignment, very few curves, and shorter than the OCA by about 11 km. Two 
inverted siphons carried water below deep overburden deposits within the rock 
foundation at one location and the Harlem River at the other location.  The NCA has a 
40-km gravity flow section and a 13-km pressurized flow section. This aqueduct, also 
lined with several courses of brick and mortar to reduce seepage, was laid on a 
relatively flat slope of 0.00014, and it delivered about 13 m3 s-1 by gravity flow from a 
new, larger reservoir in the Croton River 5 km downstream from the older dam. This 
105-year old aqueduct is still operated for water supply today.  

 

 
 

Figure 1: New Croton Aqueduct, a 4.27-m horseshoe-shaped tunnel.  
Courtesy of Harza Engineering Co., Chicago, IL, USA 

 
2. Tunnels 
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Tunnels can be excavated in everything from stable to unstable rock or unstable soils.  
Geologic studies and site explorations, performed prior to tunnel excavation, provide 
information for design and construction methods.   
 
2.1 Introduction 
 
Tunnels are excavated using (1) drilling and blasting, (2) tunnel boring machines, (3) 
earth pressure boring shields, or (4) heavy hydraulic hammers.  Many tunnels are lined 
using concrete, decorative concrete liners, steel, shotcrete, plastic and fiberglass. Some 
tunnels are left unlined.  All tunnels require some form of permanent support after 
tunnel excavation to stabilize the native materials and prevent their fall into the tunnel.  
 
2.2 Geologic Studies and Exploration 
 
Before proceeding with the final design or construction of a tunnel, a program of 
geologic studies and exploration is required to determine the geology and physical 
properties of the soil and rock materials through which the tunnel is to be driven. The 
geologic studies are required to determine the rock types and locations of potential 
faults and geologic anomalies that may affect the details of constructing the tunnel. 
Geologic maps, soil conservation service maps, and other information available from 
local, state and national records are used for these studies.   
 
The exploration program consists of drilling holes through these materials, recovering 
samples, and performing tests on the samples to document the properties. An 
experienced geologist usually logs all holes to document the rock jointing, and its 
orientation and frequency.  Water pressure tests are also performed to determine the 
permeability of the jointing within the rock mass. The number of holes drilled varies 
depending on the type of rock, geography, and results of the geologic and preliminary 
design studies performed prior to start of final design. Rock core sample testing may 
include density, unconfined compression, modulus of elasticity, and occasionally other 
properties.  Soils are tested to determine soil classification, density, strength, 
permeability, and compressibility.   
 
2.3 Excavation 
 
Tunnels are excavated either from portals or from shafts.  Portals are common for 
transportation tunnels excavated through hills or mountains. Tunnels for community 
water supply, hydroelectric plants, or for storm water often require shafts for access to 
construct the tunnel, to remove tunnel muck, to transmit raw, finished, or storm water to 
the tunnels, or for ventilation. Shafts are usually vertical and excavated by drilling and 
blasting or by raise boring.   
 
Drilling and blasting consists of drilling blast holes 38 mm in diameter to a depth 
slightly deeper than the desired rock excavation for a single round.  The holes are then 
loaded with modern blasting material and sand. The blasting material in the holes is 
then ignited to loosen the rock so that it can be efficiently excavated. Blasting is 
controlled to minimize the particle velocity and air over-pressure to prevent damage to 
surrounding structures. Seismographs are used to measure the vibrations induced in the 
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ground by the blasting. Typically blast vibrations that may reach adjacent structures are 
controlled within a range of 0.2 to 0.6 m s-1.  Air blast overpressure and impact noise are 
also typically limited to 115 dB and measured with an impact noise meter or a nearby 
seismograph. 
 
Techniques used to move the rock for easy excavation include the following: 
 
• Drilling holes at a proper spacing for the depth of the round,  
• Loading the holes with the proper amount of blasting materials so that the rock is 

loosened, broken and moved but not shattered,  
• Placing most of the blasting material at the bottom third of the blast hole to move 

the rock mass toward the open face, 
• Use of pre-splitting methods where the holes that define the limits of the area to be 

excavated are shot milliseconds before the bulk of the blasting materials so that a 
relatively smooth blast line is developed, and 

• Use of millisecond delays during ignition to move the center of the rock mass before 
the sides so that the rock mass bulks up and into the open face.    

 
Raise boring can only be performed if a tunnel exists below a proposed shaft.  The 
method consists of drilling a small hole from the top of the proposed shaft to the tunnel 
below.   A drill shaft is then placed in the small drilled hole with a cutter head attached 
to the bottom of the drill shaft.  A drillmotor is then attached to the drill shaft at the top 
of the proposed shaft and the shaft is then drilled from the bottom up to the top.  The 
cuttings from the drilling fall into the tunnel from which they are easily removed.  
Shafts can also be down drilled, but in this operation the drill cuttings must be removed 
from the top of the shaft.  
 

 
 

Figure 2: Chicago Tunnel and Reservoir Plan (TARP) 9.76-m diameter Tunnel Boring 
Machine. Courtesy of Harza Engineering Co., Chicago, IL. 
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Tunnels in rock can be excavated by use of drill and blast techniques or by tunnel 
boring machines (TBMs).  TBMs have cutter heads driven by powerful motors that 
continuously cut the rock efficiently by the use of bits on the face of the drill head (See 
Figures 2 and 3). The rock cuttings (tunnel muck) are removed behind the TBM by 
conveyors to the shaft or by means of small railroad cars that carry the tunnel muck to 
the shaft for removal to the surface. Tunnel boring machines are economical only for 
tunnel lengths of more than 1 km. Shorter lengths have been excavated by TBMs under 
unusual circumstances.  Micro TBMs have also been used to excavate small diameter 
tunnels in rock or soil materials for installation of cables, small sewer conduits or water 
and storm sewer lines. TBMs have been used to excavate tunnels up to 15 m in diameter 
and larger machines are being designed.  Almost all of the 120-km of storm sewer 
tunnels in the limestone below the City of Chicago have been excavated by TBMs. 
Advance rates for the TBMs range from 150 to 400 feet per day depending on the rock 
geology and other factors.  
 
Regardless of the method of excavation, all tunnels require some support to stabilize the 
rock and prevent rock falls into the tunnel after excavation.  Rock bolts, shotcrete, steel 
ribs and lagging, and liner plates are the devices used to support the rock and soil 
surface after excavation.  These supports are permanent and maintain stable rock faces 
during the life of the tunnel.   
 
2.4 Lining 
 
Tunnels are lined to prevent exfiltration out of or infiltration into the tunnel and to 
provide a smooth surface for improved hydraulic flow. But not all tunnels are lined.  
Some tunnels for raw water supply or for hydroelectric plants are excavated, supported, 
and allowed to operate unlined.  
 

 
 

Figure 3: Typical side view of a tunnel boring machine.  
Courtesy of Harza Engineering Co., Chicago, IL, USA. 
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Although linings may be concrete pipe, steel plate or pipe, and plastic or fiberglass pipe, 
the most common lining material is cast-in-place concrete.  Steel linings are normally 
used when high internal water pressures are expected. The thickness of concrete lining 
is normally at least 300 mm and may even be 1000 mm for some applications. The 
thickness of steel pipe depends on the internal and external water pressures. Some 
tunnels under high internal pressures (several hundred kPa) have steel linings 25 to 50 
mm or more in thickness.  When lower pressures are anticipated, thicknesses of 6 to 18 
mm are more common.  Some tunnels have also been lined with a thin (100 mm more or 
less) layer of shotcrete for protection against rock deterioration.  Transportation tunnels 
are usually lined with decorative precast concrete liners.      
 
3. Canals 
 
Many civilizations throughout history have developed at or near ample supplies of 
rivers and lakes to satisfy the need for water for domestic use, transportation of people 
and goods, and irrigation.  Ancient examples include the Indus River in India and the 
Nile River in Egypt. 
 
3.1 Introduction 
 
Over time, population centers grew in regions at some distance from adequate fresh 
water supplies, and the need to convey water became apparent.  Ancient civilizations 
soon learned the rudiments of the construction of canals, which are channels cut into the 
earth that allow for the routing of water down slope in much the same way as a river 
flows. 
 
As population centers prospered and grew during the Industrial Revolution, the spread 
of disease from the pollution of nearby water supplies gave renewed impetus to the 
importation of water from more pristine sources.  New York City, for example, 
imported water from the upstate region of the Catskill Mountains to satisfy the need for 
drinking water in the late nineteenth century. 
 
The development of hydrodynamic (kinetic) pumps and the electrical motors to drive 
them and the increasingly widespread availability of electrical power during the 
nineteenth and twentieth centuries have made the pressurization and distribution of 
water through pipelines much more common, even allowing for water to be sent uphill.  
Although pipelines are more expensive than canals, they avoid the major drawbacks 
associated with canals: ease of pollution, flooding during heavy rainfall, loss of water 
through leakage and evaporation, high maintenance, and even drownings. 
 
Nevertheless, the absence of a power requirement for the transmission of water in canals 
makes them an important option for consideration whether for very remote areas 
without electrical power, or for the routing of large volumes of water.  Los Angeles, for 
example, imports Colorado River water hundreds of miles through canals to satisfy a 
significant portion of its water needs. Canals are the most common conveyance system 
for transporting irrigation water. The construction of a canal for the transmission of a 
water supply involves the determination of a route, the channel cross section, and the 
choice of control structures to regulate the flow. 
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