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Summary 
 
After a historical introduction, this article describes the state of the art and the trails for 
new developments in the field of turbulent flow modeling. O. Reynolds showed that 
when a nondimensional parameter called the Reynolds number becomes high, the flow 
becomes turbulent. This means that perturbations can be amplified and can generate 
unsteady eddies. Consequently, a turbulent flow is usually unsteady, three-dimensional, 
and contains eddies of very different sizes. Due to their large Reynolds numbers, most 
real life flows are turbulent. A first approach for simulating turbulent flows is to 
compute only the averaged motion. Incompressible turbulent flows obey the Navier-
Stokes equations. When the averaged motion is concerned, these equations are averaged 
using the Reynolds averaging. Then the Reynolds averaged Navier-Stokes equations are 
obtained. Unfortunately, due to the nonlinear advective term of the Navier-Stokes 
equations, new unknowns are obtained—the exact Reynolds stresses equations can be 
derived for the Reynolds stresses, but again, they involve higher order statistical 
correlations that are unknown. Consequently, the Reynolds averaged Navier-Stokes 
equations have to be modeled; this is called the “turbulence closure problem.” Before 
introducing the different closures used in practice, this article introduces the 
Kolmogorov theory, which explains how turbulence is possible, i.e., how turbulent 
kinetic energy is produced, and how it is dissipated, explaining why various sizes of 
eddies exist in a turbulent flow. Then the different closures are presented, first the one 
based on the Boussinesq eddy viscosity concept (the mixing length model and the k-ε 
model) and then Reynolds stress transport equations models. In parallel, recent 
approaches based on the direct resolution of the unsteady Navier-Stokes equations are 

©Encyclopedia of Life Support Systems (EOLSS) 
 

186



UNESCO-E
OLS

S  

SAMPLE
 C

HAPTERS

HYDRAULIC STRUCTURES, EQUIPMENT AND WATER DATA ACQUISITION SYSTEMS - Vol. I – Turbulent Flow 
Modeling - J. P. Chabard and D. Laurence 
 

introduced—direct numerical simulation if all the sizes of eddies are computed, or large 
eddy simulation if only the largest eddies are computed, the effect of the smallest eddies 
being introduced through modeling. As a conclusion, the trails for developments in the 
first decade of the twenty-first century are presented in the fields of both the Reynolds 
averaged Navier-Stokes equations, and direct numerical simulation. 
 
1. Introduction 
 
“Real flows are beautiful. They are always changing, with eddies randomly forming…” 
At the end of the fifteenth century, just imagine Leonardo da Vinci (1452–1519), bent 
over a bridge and gazing at the river, fascinated by these eddies, and trying to catch their 
beauty by drawing on his notebook. Real flows are beautiful because they are turbulent. 
A turbulent flow is characterized by its unsteadiness and the presence in the flow of 
eddies of various sizes. Thus, a turbulent flow is usually three-dimensional. Most flows 
in nature (flow in atmosphere, flow in rivers) and in industrial devices (piping systems, 
power plants) are turbulent. After Leonardo’s pictures, there was a wait until the 
nineteenth century for a description of the turbulent motion. The first qualitative 
description of turbulent flows was published by Hagen in 1854. He obtained flow 
visualizations by using glass pipes and particle laden flows. He exhibited two regimes 
of flow: a regular regime with smooth particle paths (laminar flow), and a regime where 
these paths become chaotic with fluctuations (turbulent flow). 
 
Barré de Saint Venant (1797–1886) was the first to link the stresses in a turbulent flow 
to the intensity of the eddies created by the flow. Then, Boussinesq (1842–1929), in his 
“essai sur la theorie des eaux courantes” (theory of fresh waters) presented at the 
Academy of Sciences of Paris in 1877, demonstrated the necessity of working on 
averaged quantities for the study of turbulent flows. He also introduced the eddy 
viscosity concept, which is used in a large number of turbulence models. He linked the 
eddy viscosity to the intensity of the mean fluctuations produced in a turbulent flow. 
 
Osborne Reynolds (1842–1912) exhibited a nondimensional parameter which is related 
to the transition between the laminar and the turbulent flow regime. This parameter is 

called the Reynolds number, Re VD VDρ
μ ν

= = , where V is the velocity, D a length 

scale, ρ the density, μ the dynamic viscosity of the fluid, and μν
ρ

=  the kinematic 

viscosity of the fluid). However, it was Lord Kelvin (1824–1907) who introduced the 
denomination of “turbulence.” 
 
At the beginning of the twentieth century, it was the German school of Göttingen 
University, created by Ludwig Prandtl (1875–1953), which generated advances in 
turbulent flow modeling, and especially in the field of turbulent near-wall flows. Prandtl 
introduced the first turbulence model—the mixing length model, which is well suited 
for the computation of turbulent near-wall flows. Blasius (1883–1970) produced 
experimental results of turbulent channel flows and Von Karman (1881–1963) worked 
on turbulent wakes behind obstacles and on turbulent boundary layers. 
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Kolmogorov (1903–1987) introduced in 1942 the concept of the turbulent energy 
cascade from large (size Lt) to small (size λ0) eddies. He demonstrated that theses eddies 
of different length scale also have very different velocity scales, and that the ratio of the 

largest to the smallest scale is 3/ 4

0
RetL

λ
= , explaining the coexistence in a turbulent 

flow of eddies of very different length scales. 
 
The development of powerful tools for scientific computing (including both computers 
and accurate numerical methods) enabled advances in turbulence modeling in the 1970s. 
Launder and Spalding introduced in 1972 the so-called k-ε model, based on the 
Boussinesq eddy viscosity concept, which is still commonly used for simulating 
turbulent flows. In 1975, Launder, Reece and Rodi proposed the first Reynolds stress 
transport model, removing the eddy viscosity assumption, and opening the way for more 
accurate simulations of turbulent flows. 
 
The mathematical presentation of turbulence modeling is summarized in the first section 
of this article, focusing on incompressible flows, i.e., flows with constant density. In 
such a flow, motion of fluid particles is described by the so-called Navier-Stokes 
equations. These equations cannot be solved exactly for a turbulent flow, because time 
scale and length scale of the smallest eddies in a turbulent flow are very tiny, and their 
exact simulation would require too much memory and time, even on the most advanced 
computers. Following the Boussinesq idea, it is necessary to introduce equations on 
averaged velocity and pressure. This averaging was introduced by Reynolds and led to 
Reynolds averaged Navier-Stokes equations. Unfortunately, these equations contain 
new unknowns coming from the averaging of the nonlinear advective terms—the 
Reynolds stresses related to the fluctuating velocity components. Exact equations can be 
obtained for the Reynolds stresses, but they involve again higher order unknown 
statistical correlations. A turbulence model using these Reynolds stress transport 
equations is called a second order turbulence model. 
 
Section 2 of the article focuses on the energy transfer in turbulent flows, based on the 
Kolmogorov model for homogeneous turbulence. First the kinetic turbulent energy 
equation is established. It demonstrates that a turbulent flow is possible because the 
mean flow produces turbulent energy through the interaction of large eddies with mean 
flow strain. The Kolmogorov model explains that this energy is cascading from large 
eddies towards small eddies (Kolmogorov length scale) where it is dissipated by 
viscosity. 
 
Section 3 presents various turbulence models. The simplest one is the mixing length 
model. A more advanced and predictive model is the k-ε model. This commonly used 
for real life flow simulation. More accurate models based on the Reynolds stress 
transports equations are also presented. In parallel, the way of directly solving the 
Navier-Stokes equations is introduced. It is very demanding in term of computer power, 
and is thus limited to simple flows. Nevertheless, this approach is very useful for 
producing rich numerical experiments. 
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Section 4 gives examples of turbulent flow simulations in various configurations, and 
using different turbulence models. As a conclusion, trails for future developments are 
presented. 
 
2. The Reynolds Averaged Navier-Stokes Equations 
 
2.1 Introduction 
 
The modeling of turbulent flows is introduced here for incompressible flows, which are 
representative of a large number of flows encountered in practice: air flows in the 
atmosphere, river flows, water flows in pipes, etc. 
 
Usual incompressible viscous flows are represented by the Navier-Stokes equations. If 
V = (u1, u2, u3) denotes the velocity vector, p the pressure, ρ the density and 
g = (g1, g2, g3) the gravity acceleration, these equations can be written as: 
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j j

i

i

u u
u g

t x x

u
x

σ∂ ∂
∂ ∂ ρ

∂
∂

∂⎧
+ = +⎪ ∂⎪

⎨
⎪ =⎪
⎩

 (1) 

 
In the previous equations and in all of this article, the Einstein notation is used, which 

means summing on repeated indices, i.e., 
3

1

i i
j j

j jj

u u
u u

x x
∂ ∂
∂ ∂=

= ∑  

σ = (σij) stands for the stress tensor. Usual flows follow the Newtonian constitutive law: 
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Where μ is the dynamic viscosity of the fluid. Then the Navier-Stokes equations 
become: 
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where μν
ρ

=  is the kinematic viscosity of the fluid (unit: m2/s). 

The Navier-Stokes equations remain applicable when a flow becomes turbulent. 
Starting from a steady laminar solution and increasing the velocity leads to 
amplification of small perturbations through the nonlinear advective term. These 
perturbations ultimately occupy the whole domain and are almost of comparable 
magnitude to that of the mean flow. Turbulent eddies with a wide variety of scales 
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appear. Their evolution is still given by the Navier-Stokes equations, but an increasing 
number of degrees of freedom is required to represent the smaller details of the 
turbulent flow properly. 
 
The difficulty of modeling turbulent flows arises from the fact that the fluctuations 
associated with these perturbations have a size which is often too small to be captured 
by measuring devices or computational meshes. 
 
The Navier-Stokes equations can be seen as the averaged motion of a large ensemble 
(called “fluid particle”) of individual molecules. In the same way, the equations of the 
mean velocity can be derived by averaging over a large ensemble of eddies or flow 
realizations. The resulting equations, however, will require hypotheses, and result in 
model equations that are far from universal. The main reason is that while the scale of 
“a fluid particle” is several orders of magnitude larger than that of the individual 
molecules, the scales of the mean and turbulent motions, on the other hand, are often of 
comparable magnitude and interact strongly. 
 
2.2 Reynolds Experiment (1986) 
 
Osborne Reynolds (1842–1912) was the first to quantify the transition between a regular 
laminar flow and a turbulent flow. The Reynolds experiment was very simple—a water 
tank discharging through a glass pipe of diameter D. The flow is visualized by using dye 
which is introduced through a small tube into the large pipe. The bulk velocity (flow 
rate divided by section area) in the large pipe is V. For small values of V the dye draws a 
straight line because the molecular diffusion is slow compared with the advection by the 
mean flow. The flow is said to be laminar. By gradually increasing V, the dye streak 
starts to oscillate; this first appearance of unsteadiness is called transition. Further 
increase in V results in a chaotic pattern, and dye is rapidly dispersed in the entire cross 
section of the tube. The flow is said to be turbulent. 
 
The same observations can be made if the viscosity (or the diameter of the pipe) is 
changed, while V is kept constant. That is, the transition from laminar to turbulent flow 
regimes is only characterized by the Reynolds number defined as: 
 

Re VD
ν

=  (3) 

 
In a circular pipe, transition occurs for a critical Reynolds number of Rec = 2500. If D = 
10 cm, the flow becomes turbulent above a velocity of only 2.5 cm/s. Flows in nature or 
industrial systems are thus very turbulent. 
 
2.3 Mean and Fluctuating Components of the Flow 
 
Assume that some parameter F is measured by some adequate device; repeat N times 
the same experiment ; N measured values of F are obtained: Fi, (i = 1,...,N). If N is large 
enough, then the mean value of F is approximated by: 

1 NF F
F

N
+ +

=
…
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The rigorous mean value would be obtained with N tending toward infinity. The mean 
value obtained by averaging over N experiments is called an ensemble average. It is 
more convenient to average over time in a single experiment but this time should be 
sufficient so that a large number of different eddies have gone past the sensor. 
 
2.3.1 Ergodicity Hypothesis 
 
The ergodicity hypothesis assumes that the average defined by the following time 
averaging is identical to the ensemble average: 

0
1lim ( , )

T

T
F F x t dt

T→∞
= ∫  

 
In practice, T should be large compared with the integral time-scale defined further. 
This procedure only makes sense if the mean flow is considered to be at steady state 
(constant flow-rate for instance). 
 
When the mean flow can be considered homogeneous (i.e., statistical values are 
constant in space), the mean defined by time averaging is the same as the space 
averaged value, on a space volume over which the flow is homogeneous: 
 

1lim ( , , )F F x y z dx dy dz
ΩΩ→∞

=
Ω ∫  

 
The size of this domain should be much larger than typical eddy scales, or more 
precisely the integral length-scale defined further. 
 
2.3.2 Probability Density Functions 
 
In the mathematical sense, probabilities allow the definition of the averaging operator 
independently from the previous hypotheses. The probability that a random parameter F 
should happen to fall inside a certain interval is: 

( )0 0 0Probability [ , ] ( )F F F dF P F dF∈ + =  
This defines the probability density function P(F). Naturally: 
 

( ) 0    and     ( ) 1P F P F dF
+∞

−∞
≥ =∫  

 
The knowledge of P(F) allows the construction of any statistical quantity related to F: 

'F  is the fluctuation, defined by 'F F F= − , and has a mean of zero. 
 
The probability density function allows a rigorous mathematical approach. It is useful 
for demonstrating that the averaging operator commutes with space or time, and for 
obtaining the following properties for the averaging operator: 
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2.3.3 Mean Velocity Equations 
 
Starting from the Navier-Stokes equations, Reynolds introduced for a turbulent flow the 
decomposition of the velocity and pressure into mean and fluctuating components: 

'

'
i iu u u i

p p p

⎧ = +⎪
⎨

= +⎪⎩
 

and then applied the averaging operator. Given relations in Equation (4), the linear 
terms in the Navier-Stokes equations give rise to identical terms in the mean velocity 
equations. Only the nonlinear advection term requires special attention. Using the 
incompressibility condition this term becomes: 
 

( ' )( ' )( ' )
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j j i ii i
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j j
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Applying the averaging operator, it is noted that: 
 

i ju u  is already a mean quantity, so averaging it again has no effect. Moreover: 

( )' ' 0j i j i iu u u u u= = × = 0 , but on the other hand ' ' 0i ju u ≠  

This term is carried over to the right hand side, leaving on the left hand side only the 
advection by the mean velocity. The averaged Navier-Stokes equations, called Reynolds 
averaged Navier-Stokes equations (or Reynolds equations), are thus: 
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The Reynolds stress tensor is defined by ' 'ij i jR u u= , i.e.: 
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Now the Navier-Stokes equations can be written in a vector form, with σ as  the stress 
tensor, then: 

1( . ) div( )
t ρ

∂
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∂
V V +grad V gσ    

div( ) 0=V    
thus the Reynolds equations are written as follows: 
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V V +grad V R g

V

σ  (7)
 

This clearly demonstrates that R, which is the mean of the exterior product of the 
velocity fluctuation vector: '= ⊗R V V ' , appears as a new stress tensor in the equations. 
 
2.3.4 Necessity of a Closure Hypothesis 
 
To obtain the mean velocity by solving Equation (7), an evaluation of R and 
subsequently of the fluctuating motion, is needed. 
 
The equation of the fluctuating velocity is obtained by subtracting the Reynolds 
equation from the Navier-Stokes equation, then multiplying by the fluctuation and 
averaging: 

' ' '' '
' 'i j ji i i i
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u u uu u u u
u u

t t t t t t
∂ ∂∂ ∂ ∂ ∂

∂ ∂ ∂ ∂ ∂ ∂
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∂
∂

= V =  (9) 

In a compact notation, from the momentum equation, this gives: 

( , , ' ')f p
t

∂
= ⊗

∂
V V V V  

A transport equation can be obtained for the Reynolds stresses: 
' ' ( , ' ', ' ', ' 'f p
t

∂ ⊗
= ⊗ ⊗ ⊗

∂
V V V V V V V V V ')  (10) 

 
This new set of equations depends on new unknowns, for instance ' '⊗ ⊗V V V ' . Again, 
an equation can be obtained for this third order tensor: 

' ' ' ( , ' ', ' ', , ' ' 'f p
t

∂ ⊗ ⊗
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∂
V V V V V V V V V V V… ')  (11) 
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