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Summary 
 
Stochastic hydrology is the statistical branch of hydrology that deals with the 
probabilistic modeling of those hydrological processes which have random components 
associated with them. A stochastic hydrologist will suggest appropriate models and 
means of estimating the parameters of those models, and will go on to suggest 
techniques for simulating the processes and perhaps performing forecasts using those 
models. Testing the validity of the models is an important final step before the model is 
applied in practice. Phenomena whose models are described in this article are rainfall 
and stream flow, seen as both as point and spatial processes. The content is introductory 
in nature but attempts to offer as wide a spread of applications as may be useful, 
keeping the mathematical development at an expository level. 
 
1. Introduction 
 
Hydrology is the science that attempts to catalogue, understand and model the processes 
of precipitation of water and its passage through, over and under the earth’s land 
surfaces. Hydrology has strong links with other study areas, such as ecology, geology, 
meteorology, economics, politics, social science, and law. This article addresses the 
modeling, estimation, simulation and forecasting of two of the more variable processes 
in hydrology—precipitation and stream flow. These two processes are selected from a 
list of all hydrological processes which extends to include evaporation, infiltration and 
groundwater flow, and require the measurement, cataloguing and modeling of 
temperature, humidity, wind velocity, radiation, geology, soil and vegetation cover, 
geomorphology, etc. The restriction of the attention in this article to rainfall and stream 
flow is justified because these constitute the primary variables of interest to water 
resources engineers (see Fluids at Rest and in Motion; Measurement of Free Surface 
Flow). 
 
The problem of the water resources engineer is that water is either too abundant, too 
lacking, or too dirty. Storage of water in reservoirs behind dams on rivers is a way of 
saving excess water from a time of plentiful supply, to be made available during periods 
of low flow, which can occur seasonally or over some years. 
 
 Estimates of reliability of the provision of water have to be made, together with the cost 
of supply in relation to its benefit. The dams and associated structures involved in the 
storage of water have to be protected from natural hazards, such as floods and 
earthquakes, and the chance that these might occur has to be assessed. These are tasks 
that face the water resources engineer, who has to understand how to extract the 
relevant information from the available rainfall and river flow data (see Hydrological 
Data Acquisition Systems). 
 
The understanding and modeling of the processes, ipso facto, depends on what has been 
observed in the past, remembering that the future is not what the past used to be. The 
possibility of change in climate must be anticipated, modeled, and accounted for. Short-
term precipitation forecasts, in hours for flash flooding, days for weather bulletins, and 
months for agricultural scientists, is a field of endeavor with possibly rich rewards, and 
finds its place in hydrology (see Hydraulic Methods and Modeling). 
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Stochastic models are used to describe the physical processes that are observed, and 
about which, data are recorded. Modeling is a process undertaken to understand and to 
find associations between processes, so that predictions of behavioral response can be 
conjectured and tested. Simulating the natural processes to produce possible future 
scenarios offers a means of testing the reliability of structures or schemes, and adds 
value to the information inherent in the measured data.  
 
These data sets are often woefully short, inaccurately recorded, or at worst, are 
completely lacking, in which case the stochastic hydrologist is powerless to invent 
information. However, by careful inference, interpolation and cautious extrapolation, it 
is sometimes possible to transfer information to ungauged locations; this is an ongoing 
endeavor (see Applied Hydraulics, Flow Measurement and Control). 
 
In this article, physical processes as such are not described, but rather the modeling of 
the data that present themselves in various forms in measurement of rainfall and stream 
flow. The branch of hydrology which deals with these tools is called Stochastic 
Hydrology. The word “stochastic” is a statistical term describing time series when they 
are not purely random, but exhibit dependence in time. Physical data collection is 
described elsewhere (see Hydrological Data Acquisition Systems). 
 
There are two main sections following this introduction: Section 2 deals with Statistics, 
Probability and Model Selection; and Section 3 addresses Stochastic Models. 
 
2. Statistics, Probability and Model Selection 
 
This section presents some statistics and statistical tools, probability distributions, and 
techniques of model selection, which are commonly used in stochastic hydrology. 
 
Statistics are numbers derived from data in such a way as to summarize neatly the major 
features of the behavior of the data; examples are location, spread, shape, bounds, etc. 
These descriptors include the mean, median, variance, skewness, and range of data, 
which can be calculated independently of any assumptions about the underlying 
distribution. They may suggest appropriate probability models (as distribution 
functions) which might describe or explain the way the data present themselves. 
Probability distribution functions are chosen to represent data derived from observations 
on processes in an economical way using a few parameters to define the functions. The 
exercise of choosing a suitable function is dealt with under model selection. 
 
2.1 Statistics and Statistical Methods 
 
Well-known statistics such as the mean and variance of a sample of data are the 
simplest of the quantities to derive. The mean is the average, (i.e., the sum of the data 
divided by the number of data) while the variance is the average of the squares of the 
differences of the data from their sample mean. The second statistic is an example of a 
product moment. A statistic which is more difficult to calculate is the median. The 
median is an example of an order statistic, computed by ranking the data in size from 
small to large or vice versa; the median is the middle of the ranked data, i.e., the value 
exceeded by half of the data in the sample. 
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Thus, given a sample of n data values xi: i = 1, 2, …, n, the values are given by 
Equations (1) to (3): 
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if n is even or odd, where x[j] is the jth ordered sample value. 
 
Other order statistics are the “quantiles” such as quartiles, being the values exceeded by 
¼ or ¾ of the data. The median is an example of a robust statistical measure of location. 
The word robust in this context refers to the insensitivity of a statistic to outliers. 
Outliers are those data which do not seem to “belong” to the sample; they may be values 
which are erroneous, or may have been sampled from a different population than the 
rest of the data. It is often difficult to determine which is the right deduction and more 
needs to be found out about the collection and recording of the data, and especially of 
the outliers, to ascertain whether to accept the latter or exclude them from further 
calculations. 
 
There are some useful statistical tests for outliers. One of these is to determine whether 
suspect data lie outside lower or upper cutoffs CL and CU calculated from the order 
statistics as in Equation (4): 

1.5 and 1.5L L F U U FC F d C F d= − = +             (4) 
 
where FL and FU are the lower and upper quartiles and dF = FU − FL, and is called the 
inter-quartile range. It may be that the data are very skewed, in which case they may 
require a transformation to make the data symmetrical before applying the outlier test. 
Note that if the data were truly normally distributed (see section 2.2) then dF = 1.35s 
(where s is the standard deviation) and the cutoffs are at ± 2.7s, which would, on the 
average, identify seven values out of a thousand as outliers. 
 
For finding relationships between data sets, a commonly used statistical tool is linear 
regression. Here, an underlying assumption is that there is some causal (physical) 
relationship between one variable and another. A hydrological example is the peak flow 
of a flood and its volume—if one is large (or small) the other tends to follow suit. A 
measure of the strength of this relation is a statistic called the correlation coefficient. 
This is calculated from a set of n pairs of data (xj, yj): j = 1, 2,…, n as given in Equation 
(5): 
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where the subscripted m and s are the sample means and standard deviations of the 
respective variables x and y. Note that r is bounded: |r| < 1. A high value of r (> 0.6, 
say) is indicative of a strong association between the random variables and vice versa. 
 
Linear regression exploits these ideas to suggest models for transferring information 
from one variable to another. A hydrological example of the application of regression is 
the use of long rainfall and stream-flow sequences to extend short ones, perhaps after a 
transformation to normality. 
 
2.2 Probability Distribution Functions 
 
The probability that an event A happens is written as P[A], and is interpreted as a 
number from 0 to 1. The event A can be, for example, anything like the following: 
 
• River flow rate at a given dam site exceeds 1000 m3/s at least once a year. 
• The rainfall collected in a gauge on January 7 is between 5 and 10 mm. 
• There were exactly ten dry days in March. 
 
In general, A is written [X ≤ x], which is the event that a random variable X is less than a 
given value x, in which case, P[X ≤ x] is written as FX(x) and is called the cumulative 
distribution function (cdf) of the random variable X. The probability that X exceeds a 
given value x is written GX(x) = P[X > x]; note that GX(x) = 1−FX(x) and is sometimes 
called the survivor function. 
 
If the variable X is continuous, in the sense that it can take the value of any real number 
over a range, then a probability density function (pdf), which is the derivative of FX(x), 
can be defined, labeled fX(x). 
 
If the variable concerned is discrete, having come from a counting process, then a 
probability mass function (pmf) can be defined, usually on integer values, so that the 
equivalent notations are the following: pj = pX(j) = P[X = j], and can be interpreted as pj 
= FX(x) − FX(x − ε), where ε is a small number. Thus in describing the distribution of a 
discrete random variable, the cdf is a series of steps, whereas with a continuous random 
variable, it is a smooth curve. 
 
2.2.1 Continuous Distributions 
 
Among commonly occurring distribution functions used in stochastic hydrology are the 
normal (Gaussian), log-normal, exponential, gamma and generalized extreme value 
distribution functions. Only an outline of their properties is presented here, as they are 
described in detail in readily available standard statistical texts (see Statistical Methods). 
 
The normal distribution has some very attractive properties, which tempt hydrologists to 
transform the data mathematically, so that they appear normally distributed. Taking 
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logarithms of the data, which of course must be nonnegative, is a commonly applied 
transformation of variables such as rain rates measured by a radar or derived from 
annual maximum flood peaks. If the logarithms (logs) of the data are judged to be 
normally distributed, then the data are assumed to obey the log-normal distribution. 
These two distributions, normal and log-normal, are compared in Figure 1. 
 

 
 

Figure 1. Comparison of the distributions of the normal, N and the log-normal, 
Λ probability density functions 

 
The attractive properties of the normal distribution include the following: 

• its two parameters are best estimated by the sample mean and variance, and in 
addition, in multidimensional cases, the sample covariance; 

• the sums of variates from a normal distribution are normally distributed; and 
• the sums of a large number of variates from arbitrary distributions are also 

normally distributed. 
 
Unfortunately, there is no closed-form mathematical formula to express the normal cdf. 
Its pdf is given by Equation (6), wherein μ and σ2 are the population mean and variance: 
 

2 1 2( ) (2 ) exp[ {( ) / } / 2]X x xφ πσ μ σ−= − −             (6) 
 
The normal distribution has been used to describe annual rainfall and evaporation totals, 
among other hydrological variables. Most other variable data sets are too skewed to be 
satisfactorily modeled directly by the normal distribution function. 
 
The exponential distribution (sometimes called the negative exponential) is described by 
one parameter, and is possibly the simplest continuous distribution to work with. It is 
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commonly used to describe the waiting times between events, and is an exact model of 
such a point process, if the events are randomly distributed in time. It is also an 
approximate model for the amount of rain falling into a rain gauge in a short interval, 
such as an hour, and is used to describe daily rainfall totals. 
 
The exponential distribution has a cdf is given by Equation (7): 
 

( ) 1 exp( / )XF x t k= − −                (7) 
 
and its pdf is given by Equation (8): 
 

( ) 1/ exp( / )Xf x k t k= −                (8) 
 
Here, k is the mean of the distribution. A close relative of the exponential is the gamma 
distribution, which in some parametric representations is very similar to the log-normal 
distribution. The gamma distribution can be derived as a convolution of the exponential 
distribution, and for example, can be used to describe the waiting times between one or 
more occurrences of an independent point process. In the case of the probability of 
waiting time to the next arrival in such a point process, it becomes a specialized 
distribution that reverts to the exponential distribution. 
 
The gamma distribution also is a special case of the Pearson Type 3 distribution, the 
related distribution of which, the log Pearson Type 3, has been recommended for the 
description of annual flood peaks observed in Australia and the US. 
 
The Generalized Extreme Value (GEV) distribution is a function which has, as special 
cases, three distributions which have been suggested for the modeling of extremes, such 
as floods and droughts. Of these three, the best known is the Gumbel distribution, which 
Gumbel called the Type I distribution. 
 
The Gumbel distribution has a cdf as given in Equation (9) below, which is easy to 
manipulate: 
 

( ) exp[ exp{ ( ) / }]XF x x ξ α= − − −               (9) 
 
where ξ and α are location and scale parameters, whose estimates are simply related to 
the sample mean and variance. Although routinely used by many practitioners to 
describe such variables as annual maximum stream flows, the Gumbel distribution 
suffers from the restriction that its coefficient of skewness is constant at the value 1.14. 
The GEV is a 3-parameter function that is not so limited, and is now preferred as a 
candidate for modeling extreme events. Its cdf is as given in Equation (10): 
 

1/( ) exp[ {1 ( ) / } ]XF x x κκ ξ α= − − −              (10) 
 
which reduces to the Gumbel distribution of Equation (9), when κ = 0. 
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2.2.2 Discrete Distributions 
 
The Bernoulli distribution describes binary processes like the occurrence of wet and dry 
days. It is the fundamental discrete distribution. Events, such as the occurrence of 
wet/dry days or a tossed coin turning up “heads” or “tails,” are usually assigned one of 
two numbers: 0 or 1. In such cases, the probability mass function (pmf) is simply as 
given by Equations (11) and (12): 
 

0 [ 0] 1p P X q p= = = = −               (11) 
 
where 
 

1 [ 1]p P X p= = =                (12) 
 
and is described by a single parameter, p, which is estimated by the sample mean. 
 
The Binominal distribution is a generalization of the Bernoulli distribution and 
describes processes modeled by the outcomes of several (n) Bernoulli trials at each 
stage. A hydrological example of such a random variable is the number of wet days in a 
week. The pmf is given by Equation (13): 
 

( ) ! ![ ]  for 0,1, ,
!

j n j
j

n j jp P X j p q j n
n

−⎛ ⎞−
= = = =⎜ ⎟

⎝ ⎠
…           (13) 

 
where q = 1−p as in the Bernoulli distribution. The mean of the Binominal distribution 
is np. 
 
The Poisson distribution describes the probability that a chosen number of occurrences 
of an independent point process will occur within a given interval. It is thus related to 
the exponential distribution which described above. If the mean interval between 
arrivals is k time units, where k is the parameter of the exponential, then the mean rate 
of arrival per unit time interval is λ = 1/k. The number of arrivals in an interval of t time 
units is then described by the Poisson distribution, whose pmf is given by Equation (14): 
 

( )[ ] exp( ) for 0,1,2 ,
!

n

n
tp P X n t n

n
λ λ= = = − = …            (14) 

 
A hydrological example of a random variable described by a Poisson distribution, is the 
number of storms in a given month of the year, in which case λ would change from 
month to month being larger in wet than in dry months. 
 
The Poisson distribution is the fundamental building block in a class of models called 
Generalized Poisson processes, and another set called Rectangular Pulse models used in 
modeling gauged rainfall on a continuous basis. 
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