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Summary 
 
Boiling Water Reactors were developed in the United States as well as in Europe.  They 
followed the development of Pressurized Water Reactors, the motivation being a 
simplification of the system with steam generated directly by the fuel elements within the 
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reactor core. 
 
In the boiling water reactor, steam produced in the reactor is passed directly to the turbine.  
After expansion and condensation, the water is returned to the reactor via a series of 
feedwater heaters which preheat the feedwater before it is returned to the reactor.  Since a 
high rate of heat removal from the fuel elements in the reactor is essential, a high core flow 
of coolant is maintained with only a relatively small amount of steam being generated.  
This steam is separated while the major portion is recirculated through the core as water. 
 
The fuel elements consist of many fuel rods extending the full height of the core and 
arranged in a square array.  Each fuel element is surrounded by a shroud to ensure that a 
consistent flow of coolant is maintained even when boiling occurs.  Boiling in the reactor 
core produces voids which in turn affect the degree of moderation of neutrons.  Appropriate 
design allows for this to have a partial self regulating effect on reactor operation.  Neutron 
absorbing control rods are still required for overall control of the reactor.  Since steam 
separators are required above the reactor core, the control rods are driven in from below.  
Also, because of the shrouding around the fuel elements, the control rods are inserted 
between sets of four fuel elements and are cruciform in shape. Since light water is used as a 
moderator, slightly enriched fuel is required. 
 
As with the pressurized water reactor, the reactor must be shut down about once a year 
for refueling. 
 
1. Introduction 
 
1.1. General Information 
 
The Boiling Water Reactor, commonly known by its acronym BWR, was developed a little 
later than the Pressurized Water Reactor (PWR) and shared many common features.  In the 
BWR however steam is generated directly in the core of the reactor.  The steam conditions 
of the BWR are similar to those of the PWR but, since boiling is not suppressed, the 
pressure in the reactor vessel is much lower.  On the other hand, because boiling does 
occur, the power density cannot be as high in the BWR as in the PWR leading to a larger 
size reactor core for the same power output.  The reactor vessel must also provide for 
separation of the steam and recirculation of the water.  Hence the reactor vessel for the 
BWR is much larger than that of the PWR. 
 
There were initially two types of BWR, the dual and single cycle.  The dual cycle plant has 
steam generated at two pressures.  Approximately half of the steam is generated in the core 
at the higher pressure and the other half generated externally at the lower pressure.  The 
steam is generated at the lower pressure either by flashing some high pressure water from 
the core or by heat exchange from the high pressure water.  The high pressure steam flows 
through the initial stages of the turbine before joining the lower pressure steam.  The 
combined flow then passes through the final stages.  The single cycle is the more common 
in BWR plants with steam being generated only in the reactor core.   
 
There are about 90 BWRs in service, giving a total capacity of nearly 80 000 MWe.  Of 
these, about 40% are in service in the USA.  This reactor type was originally designed in 
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the USA by General Electric (GE).  Since then GE plants have been built in Germany, 
Italy, India, Netherlands, Japan, Spain, Sweden and Switzerland through various licensing 
agreements.  Hitachi and Toshiba in Japan have, together with GE, developed an advanced 
large BWR.  Kraftwerk Union (KWU) in Germany and ASEA-Atom in Sweden have 
embarked on their own innovative designs. 
 
1.2. General Arrangement 
 
Like the PWR the BWR is surrounded by a robust containment to protect the reactor from 
external influences and to contain radioactive products in the event of a major system 
rupture.  However with the reactor core and steam generator all within a single vessel it is 
possible to divide the interior of the containment into two parts with the reactor cavity 
venting via a drywell to a toroidal suppression pool as shown in Figure 1.  Any steam 
release due to a loss of coolant accident (LOCA) is thus directed into the suppression pool 
and condensed.  By contrast, in the case of a LOCA in the PWR, the steam is released into 
the whole containment, as shown in Figure 2, and condensed by water sprays within the 
upper containment.  The more recent BWR designs, as shown in Figure 3, combine the two 
philosophies and have any steam release directed via the drywell and through vents into an 
annular suppression pool, where most steam should be condensed, before entering the main 
containment.  This has water sprays in the upper containment as a backup in the event of a 
major steam release. 

 
 

Figure 1:  Early BWR containment structure 
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Figure 2:  PWR containment structure 
 

 
 

Figure 3:  Later BWR containment structure 
 
It should be noted that the water inventory is very large, as is desirable to enhance reactor 
safety following a LOCA, and in the event of a pipe rupture a large amount of steam would 
be produced by flashing of the water as the pressure in the system decayed.  This steam 
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would expand some 60 times as the pressure dropped from reactor pressure to atmospheric 
pressure making it necessary to condense as much as possible. 
 
The BWR is designed to withstand a LOCA, including a double-ended, circumferential 
rupture of a reactor coolant external recirculating line resulting in a loss of reactor coolant 
at the maximum rate.  This is accomplished by several secondary cooling systems which 
provide redundant cooling to prevent fuel damage and excessive heat buildup in the reactor 
core.  In addition, the reactor building is designed to be a controlled leakage structure 
which will control the release of filtered reactor building atmosphere under the design basis 
accident conditions.  A gas treatment system is on standby to filter and release reactor 
building air to the main stack during plant containment conditions to minimize the release 
of airborne radioactive particles. 
 
2. General Configuration 
 
2.1. Reactor Arrangement 
 
The BWR, as the name implies, boils water and generates steam within the reactor core.  
As with the PWR the coolant and moderator is light water. Since the neutron moderating 
distance is short in a light water moderator, the individual fuel rods are close together 
separated by only a relatively small amount of moderator which also serves as the coolant.  
The core is thus fairly compact but nevertheless larger than that of the PWR since, on 
boiling, the coolant increases in volume and requires an adequate flow area.  Furthermore, 
since some parts of the fuel rods may be exposed to vapor, heat transfer coefficients are 
more conservative than those of the PWR leading to a larger fuel rod surface area and also 
a larger core. 
 
A typical cross-section of a BWR is shown in Figure 4.  Overall the reactor vessel is 
considerably larger than that of the PWR as it has to house the larger reactor core as well as 
control rods below and steam separators and dryers above the core.  The core consists of a 
large number of fuel elements resting on the core plate.  Control rods are driven in from 
below the core because of the need to locate the steam separators and dryers above the core. 
 The coolant flows upwards in the core and is driven by a series of jet pumps located in the 
annulus between the core and the reactor vessel.  About 30 % of the total circulating flow is 
boosted in pressure outside the reactor vessel and returned to be used as the driving flow 
for the jet pumps.   
 
Steam is generated in the core and passes upwards into the steam separators where the 
swirling action of the vertical cyclones separates the steam from the water which is 
returned to be recirculated through the reactor core.  Only about 14 % of the circulating 
water is converted to steam which after separation from the water passes upwards to the 
steam driers.   
 
These are of chevron or mesh construction to trap the remaining moisture in the steam so 
that it can be passed to the steam turbine in a very nearly dry condition.  The steam outlet 
nozzles are on the side of reactor vessel to allow the reactor vessel head to be removed 
more easily for refueling.  The steam dryers and steam separators do however have to be 
removed to gain access to the reactor core. 
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Figure 4:  BWR vessel cross-section 
 
From the reactor vessel steam passes through the main steam lines to the high pressure 
turbines which drive the generator.  Generally the steam goes from a high pressure turbine 
via the moisture separators and reheaters to one or more low pressure turbines. A 1000 
MWe plant would typically have one high pressure and three low pressure turbines. 
 
Since boiling occurs in the core, pressure in the core is maintained at saturation, that is, 
about 7 MPa.  Although the pressure vessel is larger than a PWR, the pressure is lower so 
the wall thickness is approximately the same as that of a PWR.  Operating temperature of 
the reactor is approximately 285EC (545°F) and 6.9 MPa (1000 lbf in-2).  Table 1 shows 
parameters for typical BWRs as power levels and efficiencies were improved with design 
evolution. 

 
 

Parameter 
 

Brown’s Ferry 
(1974) 

 

 
Hartsville (1986) 

 
Later BWR 

 
Heat Output 

 
Electrical Output 

 
Overall Efficiency 

 

 
3293 MW 

 
1098 MW 

 
32.9% 

 

 
3600 MW 

 
1233 MW 

 
33.8% 

 

 
3830 MW 

 
1330 MW 

 
34.2% 
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Power Density 
 

51 kW/L 54 kW/L 56 kW/L 

 
Table 1:  Comparison of BWRs 

 
2.2. Recirculation Pumps and Jet Pumps 
 
Boiling in the reactor core produces a buoyant effect that promotes natural circulation up 
through the core and down through the annulus surrounding the core.  This is enhanced by 
the chimney effect of the additional height created by the steam separators and their inlet 
risers.  Natural circulation however is insufficient on its own to provide the desired flow 
rate through the core so jet pumps are provided to ensure the necessary forced circulation.  
These are located in the annulus between the core and the reactor vessel in such a manner 
as to allow natural circulation when they are not operating.  When operating, a portion of 
the reactor coolant is withdrawn from the reactor vessel, pumped by recirculating pumps 
and returned to the jet pump nozzles inside the reactor vessel.  This higher pressure water, 
on discharge through the nozzles, develops a high velocity and draws in the remaining 
reactor coolant which mixes with it in the diffusers.  A typical BWR, as shown in Figure 5, 
may have two recirculation loops supplying a total of 10 to 12 jet pump assemblies each 
having a pair of jet pumps.  The jet pump diffusers are located in the annulus in such a way 
that the inlets are near the top of the core.  Thus, in the event of a pipe break in an external 
recirculation loop, coolant can only be lost from the annulus and not from the reactor core.  
This is one safety feature of the reactor to guard against loss of coolant in the core.   
 

 

 
 

Figure 5:  BWR coolant circulation and steam separation 
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