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Summary 
 
The Carnot cycle is an ideal thermodynamic cycle based on the laws of thermodynamics.  
It indicates the maximum efficiency of a heat engine when operating between given 
temperatures of heat acceptance and heat rejection.  The Rankine cycle is also an ideal 
cycle operating between two temperature limits but it is based on the principle of 
receiving heat by evaporation and rejecting heat by condensation.  
 
The working fluid is water-steam.  In steam driven thermal power plants this basic cycle 
is modified by incorporating superheating and reheating to improve the performance of 
the turbine.   
 
The Rankine cycle with its modifications suggests the best efficiency that can be obtained 
from this two phase thermodynamic cycle when operating under given temperature limits 
but its efficiency is less than that of the Carnot cycle since some heat is added at a lower 
temperature. 
 
The efficiency of the Rankine cycle can be improved by regenerative feedwater heating 
where some steam is taken from the turbine during the expansion process and used to 
preheat the feedwater before it is evaporated in the boiler.   
 
In the ideal case with complete preheating in an infinite number of steps, the basic 
Rankine cycle without modifications approaches the Carnot cycle. Heat addition occurs 
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only at the highest temperature and heat rejection only at the lowest temperature as with 
the Carnot cycle. 
 
Departures from the ideal situation described above are due to fluid friction in the system, 
particularly the turbine, and heat transfer across finite temperature differences in the 
feedwater heaters.  These degrade the efficiency below that indicated by calculations 
based on the Rankine cycle under ideal conditions.   
 
Friction in the turbine can be defined in terms of the actual work done and the ideal work 
that could be done in the turbine if there were no friction.  
 
 This is known as the internal efficiency of the turbine and should not be confused with 
the thermal cycle efficiency. 
 
Under part load conditions the steam entering the turbine is partially throttled to reduce 
its flow.  This has an effect on the expansion of the steam in the turbine and ultimately on 
the power output per unit mass of steam and hence the overall cycle efficiency. 
 
1. Cycle Efficienies  
 
1.2. Introduction 
 
Early reciprocating steam engines and most steam locomotives were designed to operate 
on an open cycle where the exhaust steam was discharged to the atmosphere.  This 
necessitated an adequate supply of fresh water.  
 
 Impurities in the water accumulated in the boiler during the steam generating process and 
some form of water treatment in the boiler or prior to the water entering the boiler was 
required.  If however the exhaust steam was condensed and re-used the need for fresh 
supplies and for water conditioning was substantially reduced.   
 
In addition a substantial benefit was obtained from the expansion of the steam down to 
vacuum conditions in a condenser leading to improved efficiency.  This cycle of boiling, 
expansion, condensation and return to the boiler is commonly known as the Rankine 
Cycle.   
 
Steam turbines generally operate within such a thermodynamic cycle with work produced 
by the expansion of steam from a high pressure to a low pressure. After condensation 
some work is required to pump the water back into the boiler.   
 
The work required in pumping the liquid against the pressure difference is considerably 
less than the work produced by the steam in expanding across the same pressure 
difference.   
 
The prime energy input to the cycle is that required to generate steam from water.  Work 
is produced in the turbine and heat is rejected when the steam is condensed to water. 
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Figure 1:  Carnot cycle 
1.2. Carnot Cycle 
 
The Carnot cycle is illustrated in Figure 1.  In this cycle heat is added to the working fluid 
at a high temperature and rejected at a low temperature.  The top temperature is limited by 
material properties and the bottom temperature by ambient conditions.  The cycle is 
completed by isentropic (reversible adiabatic) processes between the two temperatures.  
This is an ideal situation but by using steam and water as the working fluid it is possible to 
approach this situation.  By boiling water at a fixed elevated pressure, heat addition at a 
constant high temperature can be achieved.  Similarly by condensing steam at a fixed 
reduced pressure (high vacuum conditions), heat rejection at a constant low temperature 
can be achieved.  This low temperature is close to ambient conditions.  Expansion of 
steam from high pressure to low pressure in a turbine in a reversible adiabatic manner that 
is without fluid friction or heat transfer is isentropic.  Similarly compression of water is 
isentropic but the rise in temperature during compression is small and heat must be added 
to bring the temperature up to the point where steam begins to be generated. This process 
of heating the compressed water at temperatures below the top temperature is the only 
deviation from the ideal Carnot cycle and leads to a reduction in the theoretical efficiency 
for the cycle.  This reduction in efficiency can be demonstrated with reference to Figure 2.  
For the Carnot cycle the total heat added Qin is area ABEF while the work done Wout is 
area ABCD.  For the water-steam cycle the total heat added Qin

* is area HBEFG while the 
work done Wout

* is area HBCDG.  The difference ΔW between the two cycles is area AGH.  
The Carnot cycle efficiency is as follows: 
 

Carnot out in /W Qη =   (1) 
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The water-steam cycle efficiency is given by: 
 

* *
water-steam out in out in / ( -  ) /( - )W Q W W Q Wη = = Δ Δ    (2) 

 
Since Wout is always less than Qin it is evident that ηwater-steam will always be less than 
ηCarnot.  The ideal water-steam cycle described above may be used as a reference against 
which real water-steam cycles may be compared and is known as the Rankine Cycle. 
 

 
 

Figure 2:  Comparison of Carnot cycle and Rankine cycle 
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