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Summary 
 
Rheology is the study of the deformation and flow of all matter. Fluid foods that contain 
relatively small molecules exhibit Newtonian behavior, while those containing 
dissolved polymers, insoluble solids, or immiscible fluids exhibit non-Newtonian flow 
behavior. The power law model has been used extensively to characterize non-
Newtonian fluid foods. Links between viscosity, and structure and sensory stimuli, as 
well as in handling operations, have been established. Small amplitude oscillatory tests 
are being used to study the characteristics of food gels, sol-gel, and gel-sol transition. 
Texture represents a group of mechanical or rheological properties. Texture tests based 
on puncture, compression, elongation, and extrusion are being used. 
 
1. Introduction 
 
By definition, rheology is the deformation and flow of matter. Rheological studies on 
liquid and solid foods are conducted using test geometries that are amenable to 
mathematical analysis of the applied strain and strain rate, and the resulting linear or 
nonlinear stress. Results obtained from many rheological studies on fluid and solid 
foods have been interpreted in terms of either the characteristics of the molecules of 
biopolymer dispersions or the microstructure or composition of multi-component foods. 
In many instances, as in the viscosity of food suspensions and viscoelastic properties of 
gels, and the effect of temperature on the viscosity of fluid foods, the results of 
pioneering studies by distinguished scientists, such as Acrivos, Arrhenius, Flory, de 
Gennes, and Krieger are applicable (see Newtonian and Non-Newtonian Flow, 
Viscoelasticity). 
 
There are numerous definitions for food texture, many of which are commodity-oriented 
and others that are feel-oriented, but it is generally recognized that texture represents a 
group of physical properties that are often mechanical or rheological. Texture profile 
analysis (TPA) has emerged as one manner of understanding the results obtained from 
texture tests, and several characteristics of foods have been introduced. For example, 
rigidity, which comes very close to being the classical elastic modulus, is one such 
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parameter (see Solid Foods, Texture in Solid and Semi-Solid Foods). 
 
The various topics in Food Rheology and Texture that follow cover several important 
subjects which are useful in better understanding the role of composition and structure 
on rheological behavior; also included are up-to-date measurement techniques. Because 
many fluid foods exhibit either Newtonian or non-Newtonian behavior, one of the 
articles is on Newtonian and non-Newtonian flow. The non-Newtonian behavior is due 
to either dissolved polymers (guar gum, xanthan gum, pectins, amylose, proteins) and/or 
due to the dispersed nature of the food where the dispersed phase may be made up of 
insoluble solids (as in suspensions) or an immiscible fluid (as in emulsions). Due to 
their unique nature, the rheological behavior of emulsions and suspensions are best 
studied separately. 
 
In food rheology, many widely applicable models have been developed to fit shear rate 
( 1,  sγ − ) versus shear stress (σ , Pa), and to describe the effect of temperature on the 
rheological data of fluid foods. For example, the applicability of the power law model 
(Equation 1) to many fluid foods over ranges of shear rates (10-150 1s− ), useful in many 
practical applications, and that of the Arrhenius equation for quantitatively describing 
the effect of temperature on the viscosity (Equation 2), or the consistency index of the 
power law model (Equation 3), have been well documented. 
 

nKσ γ=           (1) 
 

( ) exp /aE RTη η∞=  (2) 
 

 exp  ( / )aK K E RT∞=         (3) 
 

Compilations of values of the power law parameters and the Arrhenius activation 
energies can be found in several of the references listed in the Bibliography. A number 
of other useful flow models (e.g., the Casson model used for characterizing chocolate) 
and functional models (e.g., Krieger-Dougherty model for the influence of suspended 
solids and the Williams-Landel-Ferry model for the effect of temperature) are available 
for obtaining information on fluid foods and correlating their rheological behavior, and 
they have been reviewed elsewhere. 
 
Many food polymers occur naturally in plants and animals, and a few are also obtained 
by fermentation (e.g., xanthan gum). Most, if not all, are soluble in water and are called 
food gums or food hydrocolloids. Food hydrocolloids play many important roles, such 
as imparting desirable viscosity, yield stress, and ice crystal formation. The relationship 
between the viscosity and the molecular size of several carbohydrate polymers has been 

studied. Specifically, the viscosity spη  = 0 s

s

η η
η

⎛ ⎞−
⎜ ⎟
⎝ ⎠

, based on the constant viscosity at 

low shear rates of the dispersions of several carbohydrate polymers, called the zero-
shear or Newtonian viscosity ( 0η ), was related to the product of concentration ( )c  and 
intrinsic viscosity, called the coil-overlap parameter ( [ ]c η ); sη is the viscosity of the 
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solvent (water). The coil-overlap parameter reflects the degree of occupancy of space by 
the food polymer coils. Separate correlations were found for the dilute region ( [ ]c η up 
to about 4) with a slope of 1.4 and for the concentrated region with a slope of 3.3 
(Figure 1). Because the intrinsic viscosity of a biopolymer is closely associated with its 
molecular weight (M) via the Mark-Houwink equation (Equation 4), the link between 
viscosity and molecular weight should be recognized. 
 

( )[ ] a
MHK Mη =         (4) 

 
where MHK  and a are empirical coefficients. One important use of the relationship in 
Figure 1 is that it can be used to estimate the zero-shear viscosity of the dispersion of a 
food polymer when the polymer concentration and intrinsic viscosity are known. In 
addition, exponential and power law models can be used to describe the influence of 
soluble (e.g., °Brix) and insoluble solids (e.g., the pulp content of fruit juices) on the 
viscosity of processed foods (e.g., fruit juices and purees). 
 

 
 

Figure 1. Variation of specific viscosity based on the zero-shear (Newtonian) viscosity 
of biopolymer dispersions with the coil-overlap parameter:  dextran;  

carboxymethylamylose (0.5M NaCl, pH7);  high mannuronate alginate (0.2M NaCl, 
pH7);  high guluronate alginate (0.2M Na Cl, pH7);  (hyaluronate (0.015M NaCl; 

pH7);  lambda carrageenan (0.075 M KCl; pH7). 
[From: Morris E.R., Cutler A.N., Ross-Murphy S.B., and Rees D.A. (1981). 

Concentration and shear rate dependence of viscosity in random coil polysaccharide 
solutions. Carbohydrate Polymers 1, 5-21.] 
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