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Summary 
 
In the present chapter, the mathematical formulations and architectural structures of 
reinforcement learning (RL) and a corresponding implementation approach known as 
adaptive dynamic programming (ADP) are introduced. The iterative ADP algorithm is 
developed to design the controller of nonlinear systems that both learn and exhibit 
optimal behavior. It is shown that the cost function and control law sequences of the 
iterative ADP algorithm can both converge to the optimal ones. Then, the globalized 
dual heuristic programming technique is employed to facilitate the iterative algorithm, 
where three neural networks are constructed to approximate the system dynamics, the 
cost function, and the control law, respectively. Moreover, the practical applications of 
ADP- and RL-related techniques are described. A simulation example is also provided 
to verify the effectiveness of the proposed approach. Finally, some topics about future 
development of ADP and RL are pointed out. 
 
1. Introduction 
 
Every living organism in the nature interacts with its environment and uses the 
interactions to improve its own actions to survive and increase. However, the limits 
within which the organisms can survive are often quite narrow and the resources 
available to most species are meager. Therefore, most organisms act in an optimal 
fashion in order to conserve resources yet achieve their goals. Optimal actions may be 
based on minimum fuel, minimum energy, minimum risk, maximum reward, and so on. 
 
Learning is a process of acquiring new or modifying existing knowledge, behaviors, 
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skills, values, or preferences and may involve synthesizing different types of 
information. As Poggio and Girosi (1990) stated, the problem of learning between input 
and output spaces is in fact equivalent to that of synthesizing an associative memory 
that retrieves appropriate output when the input is present and generalizes when a new 
input is applied. With strong capabilities of self-learning and adaptivity, artificial neural 
networks (ANN or NN) are an effective tool to implement learning purpose (Haykin, 
1999; Jagannathan, 2006). The ability to learn can be possessed by humans, animals, 
and some machines. 
 
As a basic branch of artificial intelligence (Sigaud and Buffet, 2010), machine learning 
is a scientific discipline concerned with the design and development of various 
algorithms. Hence, the algorithms can allow the machine to learn via inductive 
inference based on observing data that represents incomplete information about 
statistical phenomenon and generalize it to rule and make predictions on missing 
attributes or future data. There are many types of learning including supervised learning, 
unsupervised learning, etc. We call modification of actions based on interactions with 
the environment reinforcement learning (RL). The combiner of learner and decision-
maker is called the agent. The environment comprises everything outside the agent and 
also interacts with the agent. RL refers to an actor that interacts with its environment 
and modifies its actions based on stimuli received in response to its actions. RL implies 
a cause and effect relationship between actions and reward or punishment. RL concerns 
with how an agent ought to take actions in an environment so as to maximize some 
notion of cumulative reward (Lewis and Vrabie, 2009; Sutton and Barto, 1998; Wang et 
al., 2009). 
 
The RL is highly related to dynamic programming (DP) technique, which is a very 
useful tool in solving optimization problem by employing the principle of optimality. 
Additionally, in control systems community, it is also an important approach to handle 
optimal control problem. Classical DP algorithms are of limited utility in RL both 
because of their assumption of a perfect model and because of their great computational 
expense, but they are still important theoretically. DP provides an essential foundation 
for understanding RL. Actually, most of the methods of RL can be viewed as attempts to 
achieve much the same effect as DP, with less computation and without assuming a 
perfect model of the environment. 
 
It is often of interest to mimic nature and design control systems that are optimal in 
some sense of effectively achieving required performance without using undue amounts 
of resources.  
 
As is known, the optimal control of nonlinear systems is a difficult and challenging area. 
Unlike the optimal control of linear systems, the optimal control of nonlinear systems 
often requires solving the nonlinear Hamilton-Jacobi-Bellman (HJB) equation instead of 
the Riccati equation (Lewis and Syrmos, 1995). For example, the discrete-time HJB 
(DTHJB) equation is more difficult to work with than the Riccati equation because it 
involves solving nonlinear partial difference equations. Fortunately, DP provides an 
effective avenue to deal with the problems. However, due to the well-known “curse of 
dimensionality” (Bellman, 1957), it is often computationally untenable to run DP to 
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obtain the optimal solutions. Moreover, the backward direction of the search obviously 
precludes the use of DP in real-time control. 
 
One class of RL methods is built based on the actor-critic structure, namely, adaptive 
critic designs (Prokhorov and Wunsch, 1997), where an actor component applies an 
action or control policy to the environment, and a critic component assesses the value of 
that action. The combination of DP, NN and actor-critic structure results in the adaptive 
dynamic programming (ADP) algorithm, which was proposed by Werbos (1992) as a 
method to solve optimal control problems forward-in-time. During the last two decades, 
the ADP-related research has gained much progress in terms of theory and applications, 
especially in fields of artificial intelligence and control theory (Al-Tamimi et al., 2008; 
Balakrishnan et al., 2008; Bertsekas, 2011; Jagannathan and He, 2008; Lewis and 
Vrabie, 2009; Liu, 2005; Si and Wang, 2001; Vamvoudakis and Lewis, 2010; 
Venayagamoorthy, 2009; Wang et al., 2012; Werbos, 2011; Yang et al., 2008; Zhang et 
al., 2009). Now, the ADP approach has become the key direction for future research in 
understanding brain intelligence and building intelligent systems (Werbos, 2009). 
Moreover, it has becomes a main component of computational intelligence (Ruano, 
2008). 
 
2 Reinforcement Learning 
 
In simple terms, the RL problem is meant to learn from interaction to achieve a goal. 
The interacting process between agent and environment consists of the agent selecting 
actions and the environment responding to those actions and presenting new situation to 
the agent. Besides, the environment gives rise to rewards, which are special numerical 
values that the agent tries to maximize (or minimize) over time. 
 

 
 

Figure 1. The interaction between agent and environment 
 

More specifically, the agent and environment interact at each of a sequence of discrete 
time steps 0,1,2,k = … . At each time step k , the agent receives some representation of 
environment’s state n

kx ∈\ , where n\ is the set of possible states, and then selects an 
action m

ku ∈\ , where m\ is the set of actions available in state kx . One time step later, 
the agent receives a numerical reward 1kU +  and finds itself in a new state 1kx + . The 
schematic diagram of agent-environment interaction is depicted in Figure 1.  
 
At each time step, the agent implements a mapping from states to probabilities of 
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selecting each possible action. This mapping is called the agent’s policy and is denoted 
by kp , where ( , )kp x u is the probability that ku u= if kx x= . RL methods specify how the 
agent changes its policy as a result of its experience. The agent’s goal is to maximize (or 
minimize) the total amount of reward it receives over the long run. 
 
3 Adaptive Dynamic Programming 
 
The above RL problem can be taken as the basis of ADP-related problem. We consider 
nonlinear discrete-time dynamic (deterministic) systems given by 
 

1 ( , ( )), 0,1, 2,k k kx F x u x k+ = = … ,  (1) 
 
where ( )ku x can be denoted by ku for simplicity and n

kx ∈\ and m
ku ∈\ represent the 

state vector and control action of the controlled system respectively. The cost function 
associated with the controlled system is 
 

( ) ( , )i k
k i i

i k
J x U x uγ

∞
−

=

=∑ ,  (2) 

 
whereU is called the utility function and γ is the discount factor with 0 1γ< ≤ . The 
function J is dependent on the initial time step k and the initial state kx , and it is referred 
to as the cost-to-go of state kx . The objective of optimal control problem is to choose a 
control sequence 1, ,k ku u + … , so that the cost function J in (2) is minimized. According 
to Bellman’s optimality principle, the optimal cost function from time step k  
 

*

, ,1
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can be rewritten as 
 

* 1
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( ) min ( , ) min ( , )i k
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J x U x u U x uγ γ

∞
− −

+ + = +
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In other words, *( )kJ x satisfies the DTHJB equation 
 

{ }* *
1( ) min ( , ) ( )k k k kuk

J x U x u J xγ += + . (5) 

 
The corresponding optimal control *( )ku x is the ku which achieves this minimum, i.e.,  

{ }* *
1( ) arg min ( , ) ( )k k k kuk

u x U x u J xγ += + .   (6) 
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Equation (5) is the principle of optimality for discrete-time systems. Its importance lies 
in the fact that it allows one to optimize over only one control vector at a time by 
working backward in time.  
In nonlinear continuous-time case, the controlled systems can be given by 
 

0( ) ( ( ), ( ( ))),x t F x t u x t t t= ≥� .    (7) 
 
In this case, the cost is defined by 
 

( ( )) ( ( ), ( ( )))d
t

J x t U x u xτ τ τ
∞

= ∫ .  (8) 

 

For continuous-time systems, the optimal cost *
0( )J x will satisfy the HJB equation 

 
T* *

T*
* *
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( ( ))( ( ), ( )) ( ( ), ( )).
( )

u U
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x t
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⎛ ⎞∂
= + ⎜ ⎟∂⎝ ⎠

   (9) 

 

Equations (5) and (9) are called the optimality equations of DP which are the basis for 
implementation of DP. However, as stated in Section 4.1, the theoretical solution of HJB 
equation is very different to obtain. Thus, the idea of ADP has been engendered to 
circumvent the “curse of dimensionality” by building a critic system to approximate the 
cost function of DP. Solution to the ADP formulation is obtained through NN based 
actor-critic approach. Except for the aforementioned “adaptive critic designs” and RL, 
there are several other synonyms used for ADP, including “approximate dynamic 
programming”, “neuro-dynamic programming”, and “neural dynamic programming”. 
The main idea of ADP is shown in Figure 2. 

 

 
Figure 2. The main idea of ADP 
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3.1 Basic structures 
 
According to Werbos (1992) and Prokhorov and Wunsch (1997), ADP approaches were 
classified into several main schemes: heuristic dynamic programming (HDP), action-
dependent HDP (ADHDP), also known as Q-learning, dual heuristic dynamic 
programming (DHP), ADDHP, globalized DHP (GDHP), and ADGDHP. Werbos 
(1992) originally proposed two basic versions of ADP, i.e., HDP and DHP. The basic 
components are three NNs, which are model network, critic network and action 
network. The structure diagram of HDP is shown in Figure 3.  
 

 
 

Figure 3. The HDP structure 
 
In HDP, the output of the critic network is Ĵ , which is the estimate of J in (2). The 
training process is done by minimizing the following error measure over time 
 

{ }2
H H 1
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2k k k k k

k k
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When H 0E = for all k , (10) implies that 
 

1
ˆ ˆ( ) ( , ) ( )k k k kJ x U x u J xγ += + . (11) 

 
Then, we can further obtain that 
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which is the same as (2). 
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In DHP, the action network remains the same as the one for HDP, while the critic 
network outputs the derivative of the cost function, namely, the costate function. The 
structure diagram is depicted in Figure 4.  
 

 
 

Figure 4. The DHP structure 
 

Here, the critic network is trained to minimize 
 

2
1

D D
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over time. Note that when D 0E = for all k , we have 
 

1
ˆ ˆ( ) ( , ) ( )k k k k

k k k

J x U x u J x
x x x
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= +

∂ ∂ ∂
.                                                   (14) 

 
Though the training process of the critic network in DHP is somewhat complicated, the 
resulting behavior is expected to be superior to HDP. This is because the action network 
is adapted based on the value of Ĵ x∂ ∂ , which is a direct output of DHP. However, if we 
employ HDP, we have to compute Ĵ x∂ ∂ from backpropagation, which will introduce 
approximation error inevitably.  
 
3.2. Improved Structures 
 
Prokhorov and Wunsch (1997) presented some new improvements to the design of 
GDHP. The most remarkable feature of GDHP is that the critic network outputs both the 
cost function Ĵ and its derivative Ĵ x∂ ∂ . This can be schematically depicted in Figure 5. 
 
Padhi et al. (2006) proposed the single network adaptive critic structure, which 
eliminated the use of the action network and offered three potential advantages: a 

 134  



COMPUTATIONAL INTELLIGENCE – Vol. I - Adaptive Dynamic Programming And Reinforcement Learning - Derong Liu, Ding 
Wang 

©Encyclopedia of Life Support Systems (EOLSS) 

simpler architecture, lesser computational load and elimination of the approximation 
error associated with the action network. This structure is shown in Figure 6 and the 
training details can be referred to Padhi et al. (2006). 
 

 
 

Figure 5. The critic network of GDHP 
 

 
Figure 6. The single network adaptive critic structure 

  
In Si and Wang (2001), the direct HDP technique was developed for the design of 
model-free adaptive critic, as shown in Figure 7. Compared with the traditional HDP 
technique, the model network is eliminated, which simplifies the structure and reduces 
the computation burden as well. 
  

 
 

Figure 7. The direct HDP structure 
 

The binary reinforcement signal ( )kr x is provided from the external environment and 
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may be as simple as either a “0” or “ 1− ” corresponding to “success” or “failure”, 
respectively. The prediction error for training the critic network 
is 1

ˆ ˆ( ) ( ) ( , )k k k kJ x J x U x uγ −− + . The principle in adapting the action network is to 
indirectly backpropagate the error between the desired ultimate objective, denoted 
by c ( )kU x , and the approximate cost function ˆ( )kJ x . The value of c ( )kU x  can be set to 
“0”, which has be defined as the reinforcement signal for “success”.  
 
Liu et al. (2001) further studied the model-free adaptive critic designs and provided two 
approaches for training the critic network. Figure 8 shows the diagram of forward-in-
time approach.  
 

 
 

Figure 8. The forward-in-time approach 
 
In this approach, we view ˆ( )kJ x as the output of the critic network to be trained and 
choose 1

ˆ( , ) ( )k k kU x u J xγ ++ as the training target. Obviously, ˆ( )kJ x and 1
ˆ( )kJ x + are 

obtained using state variables at different time instances.  
 
Another method for training the critic network is backward-in-time approach described 
in Figure 9.  
 

 
 

Figure 9. The backward-in-time approach 
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Nomenclature  

LAN : Localist Attractor Networks  
RAN : Reconsolidation Attractor Network  
ReC : Memory Reconsolidation  
ReKAM : Reconsolidation Kernel Associative Memory 
SOM : Self Organizing Maps  
STDP : Spike Timing Dependent Plasticity  
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