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Summary 
 
This chapter provides an introduction to Swarm Intelligence (SI), a discipline dealing 
with artificial and natural systems studying the collective behaviors of social insects or 
animals. SI represents a new concept of Artificial Intelligence and is becoming 
increasingly popular in recent years. Nature provides many inspirations for the 
development of SI techniques. These SI techniques have shown remarkable capabilities 
on solving problems that are often difficult to handle by conventional computational 
techniques. In an SI system, although there is a lack of centralized control, the system at 
the swarm level exhibits complex and self-organizing behaviors. This is often the result 
of local interactions among individuals in the swarm as well as individuals with the 
environment, based on very simple interaction rules.  
 
This chapter will first provide readers an overview on SI and how it complements the 
traditional definition of Artificial Intelligence. Several biological examples as 
inspirations for SI techniques will be provided, along with the SI metaphor of the 
human society. The application of SI principles to optimization is in particular prevalent 
among its many application areas. This chapter will focus on providing a detailed 
account on one of the most popular SI techniques, Particle Swarm Optimization (PSO). 
In particular, the chapter will present the canonical PSO and its variants, and provide an 
illustration of swarm dynamics through a simplified PSO. The chapter will also discuss 
several popular PSO application areas and its recent theoretical development. 
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1. Introduction  
 
1.1. Swarm Intelligence 
 
Swarm Intelligence refers to a family of Artificial Intelligence techniques that are 
inspired by the collective behaviors exhibited by social insects, animals, as well as 
human societies. Many such phenomena can be observed in nature, such as ant foraging 
behaviors, bird flocking, fish schooling, animal herding, and many more. Even though 
individual ants are simple insects and do not exhibit sophisticated behavior, many ants 
working together can achieve fairly complex tasks. An SI system typically consists of a 
population of individuals. These individuals are usually very simple agents that on their 
own do not exhibit complex behaviors. However, complex global patterns may emerge 
from interactions between these agents and the agents with the environment. An 
intriguing property of a SI system is its ability to behave in a complex and self-
organized way without any specific individual taking control of everything. One 
definition on Swarm Intelligence provided by Kennedy (2006), the inventor of Particle 
Swarm Optimization, captures very nicely the essence of SI: 
 

“Swarm intelligence refers to a kind of problem-solving ability that emerges in 
the interactions of simple information processing units. The concept of a swarm 
suggests multiplicity, stochasticity, randomness, and messiness, and the concept 
of intelligence suggests that the problem-solving method is somehow successful. 
The information-processing units that compose a swarm can be animate, 
mechanical, computational, or mathematical; they can be insects, birds, or 
human beings; they can be array elements, robots, or standalone workstations; 
they can be real or imaginary. Their coupling can have a wide range of 
characteristics, but there must be interaction among the units.” 

 
SI techniques are problem solving techniques mimicking these sorts of social behaviors 
that we observe in nature. In essence, the problem solving ability of a SI technique is 
derived from the interactions among many simple information processing units (or 
agents). The term of Swarm Intelligence was first coined by Beni (1989) in the context 
of cellular robotic systems. Since then, the term has been used in a much broader 
research field (Blum and Merkle 2008). 
 
1.2. A Broaden Concept of Intelligence 
 
Traditionally intelligence has been considered as a trait of an individual. Kennedy and 
Eberhart (2001) remarked “The early AI researchers had made an important 
assumption, so fundamental that it was never stated explicitly nor consciously 
acknowledged. They assumed that cognition is something inside an individual’s head. 
An AI program was modeled on the vision of a single disconnected person, processing 
information inside his or her brain, turning the problem this way and that, rationally 
and coolly”. SI is a broaden concept of intelligence as it emphasizes the fact that 
intelligence should be modeled in a social context, as a result of interaction with one 
another. Intelligence should be seen as a collective entity rather than a single isolated 
one. 
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Figure 1. The double-bridge experiment: ants find the shorter path of the two between 
the nest and the food source; a) at the start, b) after some period, more ants choose the 

shorter path. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 2. Flock of birds in flight (public domain image picture). 

 
1.3. Biological Examples 
 
There are abundances of examples of social behaviors among insects and animals in 
nature that exhibit emergent intelligent properties. Following are just a few examples: 
 
Ants exhibit interesting path-finding behaviors as they go out searching for food. A 
well known biological example is the double-bridge experiment, where two bridges of 
different lengths are placed between the ant nest and the food source (Figure 1). The 
ants are set out to reach the food source and bring the food back to the nest. Since ants 
leave pheromone trails as they move around, the path with more ants passed over it will 
have a higher intensity level of pheromone than the path with fewer ants visited. 
Although at the start of foraging, there is an equal probability of going along either of 
the two bridges (Figure 1a). After a certain period of time, as more ants come back via 

Food source 
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the shorter path of the two, the intensity level of pheromone on the shorter path 
increases. Because ants tend to follow the path with a higher intensity level of 
pheromone, there will be more and more ants choosing the shorter path to reach the 
food source. Eventually almost all ants would have converged on the shorter path 
(Figure 1b). It is remarkable that though no single ant knows about how to find the 
shorter path, many ants working together manage to achieve the task. 

 
Birds fly in flocks to increase their chance of survival, finding food sources, and 
avoiding predators. By staying in a flock, birds gain several benefits. One major 
benefit is the so called “safety-in-number,” since if a predator approaches the flock, it is 
more likely to be seen by at least some of the birds in the flock than if a bird is just on 
its own. The alarm message can be quickly passed onto other birds in the vicinity, and 
soon to the entire flock. Staying in a flock also serves as a distraction, as the predator 
may struggle to single out any specific bird. Birds in a flock are more efficient in 
foraging - if any bird spots the food location and dive towards it, this information can be 
passed onto others quickly, thus the whole flock benefits. Flying in a flock following a 
certain pattern also improves the efficiency of the flight, due to better aerodynamics 
(Figure 2). 
 
Many species of fish swim in schools so as to minimize their energy consumption 
and to escape from predators’ attack. Fish schooling often refers to the fact that fish 
swim in groups in a highly coordinated manner, e.g., in the same direction. A fish 
school may appear to take on a life of its own, as they move in unison like one single 
entity. It is amazing to see hundreds of fish change the direction or speed almost at the 
same exact instant. By staying in a school, each individual fish can look out for one 
another, helping them to avoid predators’ attack. By swimming in a certain formation 
following one another, fish can reduce their body friction with water thereby keeping 
energy consumption at a very low level.  

  
Termites build sophisticated domed structures as a result of decentralized control. 
Individual termites participate in building a dome by following some very simple rules. 
For example, termites carry dirt in their mouths, and move in the direction of the 
strongest pheromone intensity, and then deposit the dirt where the smell is strongest. 
Initially termites are in random movements and only a number of small pillars are built. 
These pillars also happen to be the places visited by a larger number of termites, thereby 
the pheromone intensity being higher here. As more termites deposit their loads in a 
place, the more attractive this place is to other termites, resulting in a positive feedback 
loop. Since the deposit tend to be made on the inner side of the pillars, more and more 
build-up is formed on the inward facing side, eventually resulting in an arch. 
 
Honey bees perform waggle dances to inform other bees about the superb sites of 
food sources. Honey bees use dance as a mechanism to convey information about the 
direction and distance of the food source. Dancing honey bees adjust both duration and 
the vigor of the dance to inform other bees about the profitability of the food source. 
The duration of the dance is measured by the number of waggle phases, while the vigor 
is measured by the time interval between waggle phases. The larger number of waggle 
phases, the more profitable the food source is, hence more bees will be attracted to it. 
More examples can be found from Blum and Merkle (2008). 
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1.4. Human Social Behaviors 
 
Swarm Intelligence can be also observed in the human society. People learn from each 
other. Knowledge spreads from person to person. Culture emerges from populations. 
Human society has this remarkable ability to self-organize and adapt. A city like New 
York has several hundreds of bakeries to supply breads on a daily basis. No one dictates 
where exactly these bakeries should be located. Yet, these bakeries manage to do a good 
job to cater for the people living there. As a psychologist, Kennedy (Kennedy and 
Eberhart 2001) describes that the human society operates at three different levels, from 
individuals, to groups, to cultures: 1) Individuals learn locally from their neighbors. 
People interact with their neighbors and share insights with each other; 2) Group-level 
processes emerge as a result of the spread of knowledge through social learning. 
Regularities in beliefs, attitudes and behaviors across populations can be observed. A 
society is a self-organizing entity, and its global properties cannot be predicted from its 
constituent individuals; 3) Culture optimizes cognition. Locally formed insights and 
innovations are transported by culture to faraway individuals. Combination of various 
knowledge results in even more innovations. 
 
1.5. Application of Swarm Intelligence Principles 
 
The principles of SI have been predominantly applied to optimization, and as a result, 
inspired researchers to develop many new optimization algorithms (Blum and Li 2008). 
Among these algorithms, two most representative examples are Particle Swarm 
Optimization (Kennedy and Eberhart 2001) and Ant Colony Optimization (Dorigo, et 
al., 1996). The application of SI principles goes beyond just optimization though. For 
example, a new field of research, so called swarm robotics, is formed where physical 
robots are designed in such a way that they can collaborate to achieve tasks that are 
beyond the capability of any individual robot. This chapter will focus on introducing 
Particle Swarm Optimization (PSO), an increasingly popular SI optimization technique 
in recent years. Readers interested in general SI techniques could find a wealth of 
information from the following references (Bonabeau, et al., 1999; Kennedy and 
Eberhart 2001).  
 
2. Particle Swarm Optimization 
 
Particle Swarm Optimization (PSO) was originally proposed by James Kennedy and 
Russell Eberhart (Kennedy and Eberhart 1995). PSO is a meta-heuristic optimization 
technique modeled on the social behaviors observed in animals, insects and humans. 
Since its inception, PSO has enjoyed a wide acceptance among researchers and 
practitioners as a robust and efficient technique for solving difficult optimization 
problems. PSO was largely based on a key insight on human social behavior and 
cognition, as remarked by Kennedy: “people learn to make sense of the world by talking 
with other people about it” (Kennedy 2006). This simple yet remarkable observation 
allowed Kennedy and Eberhart to go on to design a computer program that encodes a 
population of candidate solutions and be able to refine these solutions iteratively 
through interactions among themselves, obtaining good suggestions from their 
neighbors, and making adjustment in order to improve further.  
 

 91  



COMPUTATIONAL INTELLIGENCE Vol. II - Swarm Intelligence - Xiaodong Li 
 

©Encyclopedia of Life Support Systems (EOLSS) 
 

2.1. Introduction 
 
In PSO, individual particles of a swarm represent potential solutions, which move 
through the problem search space seeking an optimal (or good enough) solution. The 
particles broadcast their current positions to neighboring particles. Through some 
random perturbation, the position of each particle is adjusted according to its velocity 
(i.e., rate of change) and the difference between its current position and the best position 
found by its neighbors, as well as the best position it has found so far, respectively. As 
the model is iterated, the swarm focuses more and more on an area of the search space 
containing high-quality solutions. The swarm as a whole is alike a flock of birds 
collectively searching for food. As time goes on, the flock gradually converges onto the 
food location. Locating an optimal solution in the search space is achieved by a 
collective effort through many particles interacting with each other. 
 
In PSO, each particle’s velocity is updated iteratively through its personal best position 
(i.e., the best position found by the particle so far), and the best position found by 
particles in its neighborhood. As a result, each particle searches around a region defined 
by its personal best position and the best position from its neighborhood. If we use iv  to 
denote the velocity of the i-th particle in the swarm, ix  to denote its position, ip  to 
denote the personal best position and gp the best position found by particles in its 
neighborhood. iv  and ix  in the original PSO algorithm are updated according to the 
following two equations (Kennedy and Eberhart 1995): 
 

( ) ( )1 2 gi i i i i← +Φ ⊗ − +Φ ⊗ −v v p x  p x  (1)
  

i i i

x x v← + i i i←x x + v  (2) 
 
where 1 1 1cΦ = R and 2 2 2cΦ = R . 1R  and 2R  are two separate vectors comprising 
random values uniformly and independently generated in the range [0,1]. 1c  and 2c  are 
acceleration coefficients. The symbol ⊗  denotes point-wise vector multiplication. Eq. 
(1) shows that the velocity term iv  of a particle is determined by three parts, the 
“momentum”, the “cognitive”, and the “social” part. The “momentum” term 

i

v  
represents the previous velocity term which is used to carry the particle in the direction 
it has traveled so far; the “cognitive” part, ( )1 i iΦ ⊗ −p x  represents the tendency of the 
particle to return to the best position it has visited so far; the “social” part, 

( )2 g iΦ ⊗ −p x , represents the tendency of the particle to be attracted towards the 
position of the best position found by the entire neighborhood. 
 
Position gp  in the “social” part is the best position found in the neighborhood of the i-th 
particle. Particles in a swarm can be mapped onto different communication structures or 
neighborhood topologies, which can be used to control information propagation 
between particles. A neighborhood topology can be thought of as a social network. 
Examples of neighborhood topologies include fully-connected, ring, star, and von 
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Neumann, etc (see Figure 3). Constricted information propagation as a result of using 
small neighborhood topologies such as von Neumann has been shown to perform better 
on complex problems, whereas larger neighborhoods generally perform better on 
simpler problems (Mendes et al. 2004). Generally speaking, a PSO implementation that 
chooses gp  from within a restricted local neighborhood is referred to as lbest PSO, 
whereas choosing gp  without any restriction (hence from the entire swarm) results in a 
gbest PSO. Algorithm 1 summarizes the basic PSO algorithm. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Generally speaking if we do not have any prior knowledge of a problem, then a 
particle’s position ix  is initialized randomly in the search space. The size of the velocity 
term iv is often randomly initialized in the range from 0 to that of half of the search 
space (Clerc 2006). The direction of iv  is set randomly by setting each dimension of iv  
to either positive or negative (50% probability each). Setting iv  this way is to ensure 
that the particle is propelled to move in some random direction even from the beginning 
of the optimization run. At the first iteration, the particle’s personal best position ip is 
set equal to ix , and from there onwards, ip  is updated with ix only if the fitness of ix is 
better than that of ip . 
 

 
 

Figure 3. Neighborhood topologies: fully-connected, ring, and star (from left to right). 
 

Algorithm 1: The basic PSO algorithm (assuming minimization): 
 

Randomly generate an initial swarm 
repeat 

for each particle i  do 
if ( ) ( )i if f<x p  then i i←p x   

if ( ) ( )gif f<x p then g i←p x  
update velocity (see Eq. (1)) 
update position (see Eq. (2)) 

end for 
until termination criterion is met 
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Glossary 
 
Artificial 
Intelligence (AI) 

: A classic computer science discipline that builds computational 
models by emulating human intelligent behavior. 

Optimization : A mathematic process of finding the best possible solution from 
a set of alternative solutions, in a given problem domain. 

Meta-heuristic : A computational method that iteratively searches for optimal 
solutions. Meta-heuristic methods do not guarantee that optimal 
solutions are always found. 

Neighborhood 
topology 

: In the context of SI, neighborhood topology defines how each 
individual interacts with other individuals in its vicinity. Popular 
neighborhood topologies include ring, star, wheel, von Neumann, 
and Moore neighborhood. 

Levy distribution : In probability theory, Levy distribution is a continuous 
probability distribution describing a non-negative random 
variable. 

Traveling 
salesman problem 

: A classic combinatorial optimization problem where the task is 
to find the shortest path among several cities, with the condition 
that each city is visited only once and the salesman must return to 
the starting city. 

Neural network : A computational learning model inspired by the structure of the 
biological neural network in a human brain. It can be used to 
learn complex mapping between input and output data, such as 
pattern recognition and classification. 

Multi-Criteria 
Decision Making 
(MCDM) 

: In operations research, MCDM is a field of study that develops 
decision making methods that must handle multiple conflicting 
criteria. For example, while a factory desires to increase its profit, 
it needs also to keep its production cost down. 

Markov chain : It is used to model the state of a system with a random variable 
which changes over time. A key property of this process is that 
the distribution of this variable is only dependent on the 
distribution of the previous state. The lack of memory property 
make it easier to analyze how a Markov chain may behave, 
thereby making it very attractive to use for modeling many 
phenomena.  
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