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Summary 
 
Stability plays a very important role in system theory and control design. The most 
fundamental concepts of stability were introduced by A.M. Lyapunov in the late 19th 
century. Lyapunov not only gave a formal statement of the problem but also proposed 
the methods which till today serve as key instruments for treating the stability problems. 
Originally developed for a family of motions defined for ordinary differential equations, 
the Lyapunov stability concepts were lately applied to dynamical systems in more 
abstract spaces and even to general motions which are not described by the equations 
studied in classical analysis. Subsequently, Lyapunov’s concepts were also adopted to 
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investigate more complicated phenomena in the behavior of dynamical systems such as 
bifurcation and chaos. The results of the stability theory have applications in examining 
motion in space, technological devices, automated systems, problems in mechanics, 
environmental studies, economics and behavioral science and many others.  
 
1. The Definition of Stability 
 
1.1. Introduction  
 
The notion of stability is as old as the civilized world and has a very clear intuitive 
meaning. Take an ordinary pendulum and put it in the lowest position, in which it is 
“stable”. Put it in the utmost upper position where it is “unstable”. Stable and unstable 
situations can be met everywhere – in mechanical motion, in technical devices, in 
medical treatment (stable or unstable state of the patient), in currency exchange and so 
on. The rigorous mathematical theory of stability had appeared in the course of studying 
mechanical motions with some early definitions of stability given by Joseph L. 
Lagrange (for example, a “stable” position for a pendulum is when its potential energy 
attains a minimum). Another definition was introduced later by Siméon D. Poisson, 
followed by others. 
 
Perhaps the most widely known theory of stability of motion well applicable to 
engineering and many other applied problems is due to Alexander M. Lyapunov. 
(Alexander Michailovich Lyapunov, (1857-1918) – a distinguished Russian 
mathematician famous for his work on stability theory and problems in probability. 
Member of the Russian Academy of Sciences, professor of the Kharkov University and 
later of the St. Petersburg University. Lyapunov’s concepts and methods are widely 
used in the mathematical and engineering communities.)  The notions of Lyapunov 
stability and asymptotic stability are followed by those of exponential stability, 
conditional stability, stability over a part of the variables, stability under persistent 
disturbances and others. In terms of such notions many natural phenomena were 
explained (as in astronomy, for example).  
 
They are also widely used in engineering design, where modified notions of “stochastic 
stability”, “absolute stability” and others had been introduced. A crucial point in 
Lyapunov’s theory is the introduction of so-called “Lyapunov functions” the knowledge 
of which allows us to identify stable systems (described by ordinary differential 
equations, for example), without solving (“integrating”) them. Lyapunov’s methods and 
their further developments are widely used in control theory and automated control 
design, where such notions as “input-output stability” and “control Lyapunov functions” 
have appeared.  
 
Beyond the scope of the present chapter also are problems of stability for distributed 
parameter processes such as hydrodynamic stability, stability of elasto-plastic and 
deformable systems, stability of bodies with cavities containing liquid etc. Subsequently 
Lyapunov’s concepts were also used to study more complicated phenomena, such as 
bifurcation, chaos and turbulence. There are also attempts to use these concepts in 
mathematical models for economics, demography, biomedical problems and other 
applied areas.  
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1.2. The Concept of Lyapunov’s Stability 
 
Consider a dynamic process described by a system of ordinary differential equations 
written in a normal form 
 

1 2( , ,..., , ), 1,..., ,i i nx f x x x t i n= =�  
 
where /i ix dx dt=� . Here t is an independent variable which usually denotes time. The 

vector T
1( ( ),..., ( )) ( ) n

nx t x t t= x ∈R is the state vector, and nR is the state space. If each 

if are independent of t , the system is called autonomous, or time-invariant.  
 
This system can be written in vector form as 
 

( , )t=x f x� .         (1) 
 
Given a vector 0

n∈x R  and a time instant 0t , consider the problem to find a solution to 
(1) satisfying the initial condition 0 0( )t =x x . This problem is called an initial-value 
problem for (1). 
 
Suppose that each if  is continuous and has continuous partial derivatives with respect 
to each of the 1,..., nx x in an open domain { , }t tΩ < < ∞x∈ . Then, for every 0 Ωx ∈  
and 0t t> , there exists a unique solution ( )tx  to the initial-value problem 0 0( )t =x x for 
(1) and this solution is defined on an open time interval containing 0t .  
 
Let ( )tx be a particular solution of Eq.(1), which is extendable throughout the semiaxis 

0[ , )t +∞ and whose stability properties one has to study. Following Lyapunov’s 
terminology, this solution is referred to as the unperturbed motion, whereas all the 
others are said to be perturbed. After shifting the variables as ( ) ( ) ( )t t t′ = −x x x , one 
may agree that ( ) 0t ≡x and ( , )t =f 0 0 for all 0t t≥ . Let || ||⋅ stand for the Euclidean norm 

for a vector in nR . 
 
Definition 1 A state =x c  is said to be an equilibrium state of the system (1) if 

( , )t ≡f c 0 for all 0t t≥ . 
 
In Lyapunov stability theory, the behavior of the perturbed motions whose initial state 

0x is in a small neighborhood of the equilibrium state =x 0 is studied. The following 
core definition is due to Lyapunov (1892). 
 
Definition 2 The equilibrium state =x 0  is called 
 
• Lyapunov stable if for each 0>ε , there exists a ( ) 0δ δ= >ε such that for any , 

the perturbed motion issuing from 0x at 0t t= , is extendable throughout the 
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semiaxis 0[ , )t ∞  and yields || ( ) ||t <x ε for all 0t t≥ . 
 
• asymptotically stable if it is stable and, in addition, there exists a 0δ > such that 

for each perturbed motion satisfying 0|| ( ) ||t δ<x , one has 
lim ( )
t

t
→∞

=x 0 .        (2) 

 
• unstable if it is not stable.  
 
Later these properties appeared in a general form. More properties wereinvented.  
 
Definition 3 The equilibrium state =x 0  is called exponentially stable if there exist 
three positive numbers 0, ,cδ η such that 0( )

0|| ( ) || || ( ) || c t tt t eη − −≤x x holds for every 
perturbed motion with 0 0|| ( ) ||t δ<x . 
 
Definition 4 The equilibrium state =x 0 is called  
 
• asymptotically stable in the large, or completely stable, or stable in the whole, if it 

is stable and lim ( )
t

t
→∞

=x 0  for each perturbed motion ( )tx , and, 

 
• exponentially stable in the large if there exist positive numbers  ,cη such that  

0( )
0|| ( ) || || ( ) || c t tt t eη − −≤x x  holds for every perturbed motion. 

 
Definition 5 The equilibrium state =x 0 is called 
 
• uniformly stable (Persidskii, 1933) if for each 0>ε there exists a ( ) 0δ δ= >ε such 

that, for any 0tτ ≥ , the inequality || ( ) ||τ δ<x implies || ( ) ||t <x ε for all t τ≥ , 
 
• uniformly asymptotically stable (Malkin, 1954) if it is uniformly stable and there is 

a 0 0δ > with the following property: for each 0>ε  there exists ( ) 0T T= >ε such 
that 0|| ( ) ||τ δ<x  implies || ( ) ||t <x ε for all t Tτ≥ + , and 

 
• uniformly asymptotically stable in the large if it is uniformly stable, and for each 

ε> 0 , there exists ( ) 0T T= >ε such that || ( ) ||t <x ε whenever  0t T t≥ + . 
 
We note that the stability property implies the perturbed motions with || ( ) ||τ δ<x to be 
extendable throughout the semi axis[ , )τ +∞ . The sufficient condition for it is that, for 
example, that, in addition to the continuity of all if and / , , 1, 2,...,i jf x i j n∂ ∂ = , the 

inequality z 1 2| ( , ,..., , ) | ( ) || ||i nf x x x t t≤ xκ  holds where ( )tκ is a continuous function. . 
 
There are known other concepts than Lyapunov’s stability which are used to qualify the 
behavior of perturbed motions (see also Section 1.9 of this article). For example, the 
equilibrium =x 0  for Eq.(1) is said to be attractive if there exists an open domain 
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nϒ ⊆R containing the equilibrium such that lim ( )
t

t
→∞

=x 0 whenever ( )τ ϒx ∈ , there with 

the domain ϒ is called the domain of attraction. Thus, the equilibrium is asymptotically 
stable if and only if (iff) it is stable and attractive. To be sure, the properties unstable 
and attractive are not mutually exclusive even for an autonomous system, as shows the 
following example by Vinograd.  
 

2 5 2
1 2 1 2 2 2 1

1 22 2 2 2 2 2 2 2 2 2
1 2 1 2 1 2 1 2

( ) ( 2 )
,   

( )(1 ( ) ) ( )(1 ( ) )
x x x x x x x

x x
x x x x x x x x

− + −
= =

+ + + + + +
� � ,  (3) 

 
In (3), the right sides are defined to be zero for 1 2 0x x= = . In this system, the origin is 
unstable but attractive. Some methods are available for estimating the domain of 
attraction.  
 
Also, it should not be taken that exponential stability of a solution implies its stability in 
the sense of Lyapunov, as Perron’s example shows:  
 

2
1 1 2 2 2, (sin(ln ) cos(ln ) 2 )x ax x t t a x x= − = + − +� �  

 
Here, the null solution is exponentially stable, but if 21

2 4( , )ea
π−+∈ , it is not stable.  

 
1.3. The Second (Direct) Method of Lyapunov 
 
The main qualitative method for investigating stability properties of an unperturbed 
motion is the direct method of Lyapunov also known as the second method of Lyapunov. 
The aim of the method is to reduce the system stability analysis to the analysis of the 
properties of some special “Lyapunov” functions, presuming that this could be done 
without integrating the original system.   
 
Consider a function ( , )V tx which is continuous and has continuous partial derivatives 
with respect to each of the arguments 1 2, ,..., ,nx x x t in a domain 

0{|| || , }Z h t t= < ≤ < ∞x . Some special terms are frequently used.  
 
Definition 6 (i) The function ( , )V tx  is called  
 
• positive (negative) semi-definite in Z if  ( , ) 0V t ≥x  (respectively, ( , ) 0V t ≤x ) for all 

( , )t Zx ∈  
• positive definite in Z  if there exists a function ( )w r , which is continuous and 

strictly increasing in [0, )r h∈ , and (0) 0w =  and such that  
 
            ( , ) (|| ||)V t w≥x x                                        (4) 
 
            for all ( , )t Zx ∈ . 
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• negative definite if  ( , )V t− x is positive definite.  
• decrescent if there exists a continuous strictly increasing function ( ), [0, )r r hϕ ∈    

such that (0) 0ϕ =  and ( , ) (|| ||)V t ϕ≤x x in Z . 

• radially unbounded if V is defined in 0{ , }n t t≥x∈R , it is positive definite and there 
is a function ( ), 0w r r ≥ yielding (4) and lim ( )

r
w r

→∞
= ∞ . 

 
(iv) (ii) The derivative 
 

1

( , ) ( , )( , ) ( , )
n

i
ii

V t V tV t f t
t x=

∂ ∂
≡ +

∂ ∂∑x xx x�      (5) 

 
is called the derivative of V along a motion of Eq.(1).  
 
Theorem 1 (The first theorem of Lyapunov, or Lyapunov’s theorem on stability) 
 
If for Eq.(1) there exists a positive definite function ( , )V tx with a negative semi-definite 
derivative ( , )V tx� , then the equilibrium state =x 0 of this equation is Lyapunov stable.  
 

 
 

Figure 1: (a) A Lyapunov function. (b) An illustration to Lyapunov’s theorem on 
asymptotic stability. (c) An illustration to Chetayev’s theorem. 

 
Theorem 2 (The second theorem of Lyapunov, or Lyapunov’s theorem on 
asymptotic stability) The equilibrium state =x 0 of Eq.(1) is asymptotically stable as 
t →∞ if there exists a positive definite decrescent function ( , )V tx with a negative 
definite derivative ( , )V tx . 
 
Theorem 3 (The first theorem of Lyapunov on instability) The equilibrium state 
=x 0 of Eq.(1) is unstable if there exists a function ( , )V tx in a domain 

0{|| || , }Z h t t= < ≤ < ∞x such that  
 

(i) ( , )V tx is decrescent in Z ; 
(ii) ( , )V tx� is positive definite in Z ; 
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(iii) there exists 0t̂ t>  such that for any (0, )h∈ε , there exists ,|| || <x x ε ,  for 
which ˆ ˆ( , ) ( , ) 0V t V t >x x� .  

 
Theorem 4 (The second theorem of Lyapunov on instability) Let there exist a 
bounded function ( , )V tx in the domain 0{|| || , }Z h t t= < ≤ < ∞x with the following 
properties: 
 

(i) ( , ) ( , )V t gV W t= +x x� where g is a positive constant and ( , )W tx is either 
identically zero or semi-definite; 

(ii) in case ( , )W tx is not identically zero, in each domain 

1 1 1{|| || , }Z h t t= < ≤ < ∞x with arbitrarily large 1t and arbitrarily small 1h , 

there exists an x such that ( , )V tx and ( , )W tx have the same sign for 1t t≥ .  
Then the equilibrium is unstable.  
 

Theorem 5 (Chetayev’s theorem on instability) The equilibrium state =x 0 of Eq.(1) 
is unstable if there exists a function ( , )V tx in a domain 0{|| || , }Z h t t= < ≤ < ∞x such 
that 
 

(i) for any 0t t≥ , there exists a nonempty domain ( ) { :|| || }Z t h+ ⊂ <x x where 
( , ) 0V t >x for each ( )Z t+x∈ and 0=x is a boundary point of ( )Z t+ ; 

(ii) for any 0t t≥ , ( , )V tx  is bounded and ( , ) 0V t >x� in ( )Z t+ ; 
(iii) for any 0α >  there exists a ( ) 0β β α= > such that from ( , )V t α>x it 

follows that ( , )V t β>x� . 
 
In Figure 1(c), the trajectory ( )tx is shown, for which 0 0( , ) 0V t α> >x . Since 

( , ) ( ) 0,  ( ( ), )V t V t tβ α> >x x� is infinitely increasing. As a consequence, the trajectory 
( )tx has eventually to leave any neighborhood of the origin. 

 
Theorem 6 (on exponential stability) The equilibrium =x 0 of system (1) is 
exponentially stable if there exists an 0>ε and a function ( , )V tx which satisfies 
 

2 2
1 2|| || ( , ) || ||V tα α≤ ≤x x x  

 
2

3( , ) || ||V t α≤ −x x�    
 

4
( , ) || ||

i

V t
x

α∂
≤

∂
x x  

 
for some positive constants 1 2 3 4, , ,α α α α and all 0|| || , t t≤ ≥x ε . 
 
Originally, Theorem 6 was formulated by Krasovskii in 1959 for time-invariant systems 
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supposed that T( )V =x x Ax and TV ≤ −x Bx� for positive definite symmetric matrices 
A and B . 
 
Now consider an autonomous system 
 

( )=x f x�          (6) 
 
which has the equilibrium state =x 0 . 
 
Theorem 7 (Barbashin-Krasovskii’s theorem on the asymptotic stability in the 
large) For system (6) let there exist a radially unbounded function ( )V x and a set 

nM ⊆R such that 
 

(i) ( ) 0V <x�  if  \n M∈x R and ( ) 0V ≤x�  if Mx∈ ; 
(ii) whatever the positive constant c is, there exist no semi-trajectory 

( ), 0t t ≥x of system (6) that lies in an intersection of M and the set ( )V c=x . 
 
Then the equilibrium state =x 0 is a asymptotically stable in the large.  
 
Barbashin-Krasovskii’s theorem enables one to conclude asymptotic stability in the 
large even when the derivative of V along a motion of (6) is not positive definite. From 
Theorem 7, La Salle’s principle follows, which is formulated in terms of an invariant 
set. The set nM ⊆R is said to be an invariant set for (6) if for all 0 Mx ∈ and all 

0 0t ≥ ,the inclusion ( )t Mx ∈ holds whenever 0 0( )t =x x . 
 
Theorem 8 (La Salles’s Principle) For Eq.(6), let there exist a positive definite 
function ( )V x such that on the compact set { : ( ) }nZ V c= ≤x x∈R one has ( ) 0V ≤x� . 
Define { : ( ) 0}S Z V= =x x�∈ . If S contains no invariant set other that =x 0 , then the 
origin is asymptotically stable.  
 
Theorem 9 (Krasovskii’s theorem on asymptotic stability in the large) For system 
(6) let the Jocobian matrix ( ) {( ( ) / )}i jf x= ∂ ∂J x x satisfy the inequality 
 
 T( ) ( ) 0, 0+ ≤ − < >J x J x Iε ε  
 
where I is the identity matrix of order n . Then the equilibrium state =x 0 is 
asymptotically stable in the large and 2( ) || ( ) ||V =x f x is a Lyapunov function for (6).  
 
Theorem 10 (Persidskii’s theorem on uniform stability) If for Eq.(6), there exists a 
positive definite decrescent function ( , )V tx with a negative definite derivative 

( , )V tx� ,then the equilibrium state =x 0 of this equations uniformly stable.  
 
Theorem 11 (Malkin’s theorem on uniform asymptotic stability) If for Eq.(6), there 
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exists a positive definite decrescent function ( , )V tx with a negative definite derivative 
( , )V tx� , then the equilibrium state =x 0 of this equation is uniformly asymptotically 

stable.  
 
Theorem 12 (on uniform asymptotic stability in the large) Let the motions of Eq.(6) 
be defined in the entire space nR . Let there exist a radially unbounded function 

( , )V tx satisfying the hypothesis of Theorem  1 in the domain 0{ : }nZ t t= ≥x∈R . Then 
the equilibrium state =x 0 of this equation is uniformly asymptotically stable in the 
large.  
 
Theorems listed above furnish sufficient conditions for stability or instability but say 
nothing about how a suitable Lyapunov function can be found. It is remarkable, 
however, that some of these theorems  can be conversed, i.e. from known stability 
properties, the existence of suitable Lyapunov function may be inferred. For example, 
for an asymptotically stable linear time-invariant system, a Lyapunov function ensuring 
asymptotic stability can always be found in the class of quadratic forms (see Section 1.5 
in this chapter).  
 
An important way to generalize the Lyapunov second method is to introduce nonsmooth 
Lyapunov functions. 
 
1.4. Sylvester’s Criterion 
 
For a broad class of differential equations, a Lyapunov function can be looked for in the 
class of quadratic forms 
 

, 1
( )

n

ij i j
i j

V x xα
=

= ∑x .        (7) 

 
This leads to a fairly simple criterion for positiveness of a quadratic form to be of use. 
The Sylvester criterion gives necessary and sufficient conditions for a quadratic form 
(7) with real coefficients ijα to be a positive definite function. Assume that the form (7) 

is symmetric, i.e. ij jiα α= for all ,i j . Then one may write ( ) TV =x x Λx , where the 

n n× matrix Λ has the entries ijα . 
 
Theorem 13 (Sylvester’s criterion) For a symmetric quadratic form (7) with real 
coefficients to be positive definite, it is necessary and sufficient that all the principal 
sub-determinants of the matrix Λ  be positive, i.e. 
 

11 12 1

21 22 211 12
11

21 22

1 2

0, 0,..., 0

n

n

n n nn

α α α
α α αα α

α
α α

α α α

> > >

…
…

… … … …
…
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