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Summary 
 
The Internal Model Control (IMC) design procedure, with emphasis on its implications 
for proportional-integral-derivative (PID) controller tuning, is presented in this chapter. 
The basis for IMC is the so called Q-parameterization structure. The IMC design 
procedure is a two step design process that aims to provide a suitable tradeoff between 
performance and robustness. In Step 1 a stable and causal controller is obtained that is 
optimal with respect to either the integral of squared error (ISE) or integral of absolute 
error (IAE) criteria for step changes to the control system; the second step augments the 
controller from Step 1 with a filter to insure that the IMC controller is proper. For many 
simple processes of interest the IMC controller, when implemented in classical feedback 
form, leads to a PID-type controller. Various illustrative examples are developed in this 
chapter and evaluated under a common setting. The performance of IMC-based PID 
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controller tuning for systems with delay is examined and contrasted with popular 
classical Ziegler-Nichols and Cohen-Coon PID controller tuning rules. 
 
1. Introduction 
 
Internal Model Control (IMC) refers to a systematic procedure for control system design 
based on the Q-parameterization concept that is the basis for many modern control 
techniques. What makes IMC particularly appealing is that it presents a methodology 
for designing Q-parameterized controllers that has both fundamental and practical 
appeal. As a consequence, IMC has been a popular design procedure in the process 
industries, particularly as a means for tuning single loop, PID-type controllers. 
 
The IMC design procedure is quite extensive and diverse. It has been developed in 
many forms; these include single-input, single-output (SISO) and multi-input, multi-
output (MIMO) formulations, continuous-time and discrete-time design procedures, 
design procedures for unstable open-loop systems, combined feedback-feedforward 
IMC design, and so forth. The focus of this chapter is on the feedback-only SISO design 
procedure for open-loop stable systems, with particular emphasis on its relationship to 
PID controller tuning.  
 
Aside from controller design, IMC is helpful in assessing the fundamental requirements 
associated with feedback control, such as determining the effect of non-minimum phase 
elements (delays and Right-Half Plane (RHP) zeros) on achievable control performance. 
Since the sophistication of the IMC controller depends on the order of the model and 
control performance requirements, the IMC design procedure is also helpful in 
determining when simple feedback control structures (such as PID controllers) are 
adequate. 
 
2. The Internal Model Control Structure 
 

 
 

Figure 1: Classical (A) and Internal Model Control (B) Feedback Structures. p  is the 
plant model, c  is the classical feedback controller, p  is the internal model, and q  is the 

IMC controller. 
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The first issue one needs to understand regarding IMC is the IMC structure (to be 
distinguished from the IMC design procedure). Figure 1B is the “Internal Model 
Control” or “Q-parameterization” structure. It consists of an internal model ( )p s  and 

an IMC controller ( ).q s  The IMC structure and the classical feedback structure (Figure 
1A) are equivalent representations; Figure 2 demonstrates the evolution of the IMC 
structure. A significant benefit of the IMC structure is that a design procedure for ( )q s  
can be developed that is more straightforward and intuitive than the direct design of a 
classical feedback controller ( ).c s  Having designed ( ) ,q s  its equivalent classical 

feedback controller ( )c s  can be readily obtained via algebraic transformations, and 
vice-versa 
 

 
 

Figure 2: Evolution of the Internal Model Control Feedback Structure. 
 

1
qc
pq

=
−

,         (1) 

 

1
cq
pc

=
+

.         (2) 

 
For linear, stable plants in the absence of constraints on ,u  it makes no difference to 
implement the controller either through c or .q  However, in the presence of actuator 
constraints, one can use the IMC structure to avoid stability problems arising from input 
saturation without the need for special anti-windup measures.  
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2.3. Closed-loop Transfer Functions for IMC 
 
The sensitivityε  and complementary sensitivity η  operators define the closed-loop 
behavior of a classical feedback linear control system.  
 
y r dη ε= +          (3) 
 

( )1u p r dη−= −         (4) 
 

( )ce r dε= − .         (5) 

Recall that 1(1 )pc pcη −= + and 1(1 )pcε −= + for classical feedback control system. A 
statement of the sensitivity and complementary sensitivity operators in terms of the 
internal model p  and the IMC controller ( )q s  corresponds to: 
 

( )
( )

1
pqs

q p p
η =

+ −
        (6) 

 

( )
1( )

1
pqs

q p p
ε −

=
+ −

.        (7) 

 
In the absence of plant/model mismatch ( ),p p=  these functions simplify to  
 

1( ) ( ) 1 ( ) 1s pq s s pq p qη ε η η−= = − = − =     (8) 
 
which lead to the following expressions for the input/output relationships between 

, , ,cy u e r  and :d  
 

_(1 )y pqr pq d= −         (9) 
 

( )u q r d= −          (10) 
 

(1 )( )ce pq r d= − − .        (11) 
 
From examining Eqs.(9)-(11), one is able to recognize the benefits of the IMC 
parameterization. The closed-loop response between set-point r  and output y  is readily 
determined from the properties of the simple product .pq  Furthermore, the manipulated 
variable response is determined through the design of .q  As a consequence, both 
analysis and synthesis tasks in the control system are simplified.  
 
2.4. Internal Stability 
 
Internal Stability (IS) is a critical theoretical requirement for any control system. In an 
internally stable control system, bounded input signals introduced anywhere in the 
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control system result in bounded output signals everywhere in the control system. For 
the IMC structure we have the following important internal stability results: 
 
1. Assume a perfect internal model ( ).p p=  The IMC control system (Figure 1B) is 

internally stable if and only if both p  and q  are stable.  
2. Assume that p  id stable and .p p=  then the classical feedback system (Figure 1A) 

with controller according to Eq.(1) is IS if and only if q  is stable.  
 
These results apply for the IMC structure even if p  and q  are nonlinear operators. For 
the case of an open-loop, linear stable system under no plant model mismatch, the IMC 
structure thus offers the following benefits with respect to classical feedback: 
• It eliminates the need to solve for the roots of the characteristic polynomial 1 ;pc+  

stability can be determined “by inspection” by examining only the poles of .q  
• It is possible to search for q  instead of c  without any loss of generality. 

 
In the case of open-loop unstable plants (which includes systems with integrators), the 
requirement that both p  and q  be stable eliminates the use of the IMC structure for the 
purposes of implementation; however, IMC still serves a useful role for the design of 
the compensator ,q  which can be implemented in classical feedback form according to 
Eq.(1). 
 
2.3. Asymptotic closed-loop behavior (System Type) 
 
Another important requirement for a feedback control system is that it leads to no offset 
for set-point and disturbance changes. Meeting this requirement for so-called Type 1 
and Type 2 inputs is described in the following: 
 
Type 1 (step Inputs): No offset to asymptotically step set-point/disturbance changes is 
obtained if 
 

( )
0

lim 0 1
s

pq η
→

= =         (12) 

 
Type 2 (Ramp Inputs): For no offset to ramp inputs, it is required that 
 

( )
0

lim 0 1
s

pq η
→

= =         (13) 

 

( )
0

lim 00s

d dpq sds ds
η

→
= ==  |        (14) 

 
These requirements will form part of the IMC design procedure, as noted in Section 3. 
 
2.5. Performance Measures 
 
Performance measures in process control are varied but norm criteria are commonly 
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used. Among the most popular choices are the Integral of Square Error (ISE) 
 

( )
2

2
0 0ISE cJ y r dt e dt
∞ ∞

= − =∫ ∫       (15) 

 
and the Integral of Absolute Error (IAE) 
 

0 0IAE cJ y r dt e dt
∞ ∞

= − =∫ ∫  .      (16) 

 
Time-weighted modifications of the ISE and IAE such as the Integral of Time-Weighted 
Square Error (ITSE) 

( )
2

2
0ITSEJ t y r dt
∞

= −∫        (17) 

 
and the Integral of Time-Weighted Absolute Error (ITAE) 
 

0ITAEJ t y r dt
∞

= −∫         (18) 

 
tend to emphasize a decrease in the control error at long times. For these performance 
measures to be well-posed they require that the external signal acting upon the control 
system be defined; usually a step set-point change is assumed. 
 
3. Internal Model Control Design Procedure 
 
The IMC design procedure is a two-step approach that, although sub-optimal in a norm-
oriented sense, provides a simple means for achieving a reasonable tradeoff between 
performance and robustness. A significant benefit of the IMC approach is the ability to 
directly specify the complementary sensitivity and sensitivity functions η  and ,ε  which 
as noted in Section 2.1, directly specify the nature of the closed-loop response. The 
presentation in this section is as follows: after developing the basic theoretical 
requirements for the design of q  (Section 3.1), an IMC design procedure leading to 
PID-type controllers for simple process systems will be developed. The more formal 
design procedure relying on 2H -optimality is briefly described in Section 6. 
 
3.1. Requirements for Physical Realizability on q,  the IMC Controller 
 
In order for ( ),u t  the manipulated variable response, to be physically realizable, the 
IMC controller q  must be stable, proper, and causal. These criteria are described 
below: 
 
1. Stability. The controller must generate bounded responses to bounded inputs; 

therefore all poles of q  must lie in the open Left-Half Plane. 
2. “Properness”. Differentiation of step inputs by a feedback controller leads to 

impulse changes in ,u  which are not physically realizable. In order to avoid pure 
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differentiation of signals, ( )q s  must be proper, which implies that the quantity 
 
lim ( )
s

q s
→∞

         (19) 

 
is finite. ( )q s  is referred to as strictly proper if 
 
lim ( ) 0
s

q s
→∞

= .        (20) 

 
A strictly proper transfer function has a denominator order greater than the numerator 
order. ( )q s  is semi-proper, that is, 
lim ( ) > 0
s

q s
→∞

         (21) 

 
if the denominator order is equal to the numerator order. A system that is not strictly 
proper or semi-proper is called improper. 
 
1. Causality. ( )q s  must be causal, which implies that the controller must rely on 

current and previous plant measurements in order to determine the current or future 
values of the manipulated variable. A simple example of a noncausal transfer 
function is the inverse  of a time delay 

 
( )( )
( )

sc
cs

c

Ku sc s K e
e s e

θ
θ

+
−= = = .      (22) 

 
The inverse transform of (22) relies on future inputs to generate a current output; it is 
clearly not physically realizable: 
 

( ) ( )c cu t K e t θ= +  .       (23) 
 
3.2. Limitations to Perfect Control: the Need for an IMC Design Procedure 
 
From examining Eqs.(9)-(11) for no plant/model mismatch ( ),p p=  “perfect” control 
(meaning y r=  for all time) is achieved when 1η =  and 0,ε =  which implies that 
 

1q p−= .         (24) 
 
In general, q  arising from “perfect” control rarely results in physically realizable 
responses in the ( ).u t  Non-minimum phase elements such as dead-time and RHP zeros 

will cause 1q p−=  to be noncausal and unstable, respectively; if p  is strictly proper, 
then q  according to (24) will be improper as well. One can better understand the 
situation with a simple example. Consider the plant model  
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( ) ( )
2 2

1
2 1

K s e
p s

s s

θβ
τ ξτ

−− +
=

+ +
,       (25) 

 
where > 0,β  which implies the presence of a Right-Half Plane zero. Non-minimum 

phase elements for this plant are se θ−  and ( )1 .sβ− +  The “perfect” IMC controller for 
this system corresponds to  
 

( )
2 2

1 2 1
1

ss sq p e
K s

θτ ξτ
β

− ++ +
= =

− +
. 

 
Despite perfect control on ,y  the manipulated variable response is physically 
unrealizable for three reasons. First, q  is unstable as a result of a Right-Half Plane pole 
arising from ( )1 .sβ− +  Secondly, q  is noncausal because of the presence of the time 

lead term .se θ+  Finally, q  is improper because the numerator order is greater than the 
denominator order, leading to the differentiation of step changes in the control system.  
 
In the ensuing sections we will show that defining the IMC controller based on a 
suitable factorization of the plant model will result in stable, causal control action; 
augmenting the controller with a properly chosen filter will insure properness and a 
physically realizable response. One must keep in mind, however, that the non-minimum 
phase elements ( )1se sθ β− − +  will always form part of the closed-loop response; these 
cannot be removed by feedback action alone. 
 
- 
- 
- 
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