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Summary    
 
When a digital controller is designed to control a continuous-time plant it is important 
to have a good understanding of the plant to be controlled as well as of the controller 
and its interfaces with the plant. There are two fundamental approaches to designing 
discrete-time control systems for continuous-time plants.  
 
The first approach is to derive a discrete-time equivalent of the plant and then design a 
discrete-time controller directly to control the discretized plant. This approach to 
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designing a digital controller directly, which has many variations, parallels the classical 
approach to analog controller design. One begins with simple discrete-time controllers, 
increasing their complexity until both steady state error and transient performance 
requirements are met.  
 
The other approach to designing discrete-time control systems for continuous-time 
plants is to first design a continuous-time controller for the plant, then derive a digital 
filter that closely approximates the behavior of the original analog controller.  
 
The filter design can approximate the integrations with discrete-time operations or it can 
be made to have step (or other) response samples that are equal to samples of the analog 
controller's step (or other) response. Usually, however, even for small sampling periods, 
the discrete-time approximation performs less well than the continuous-time controller 
from which it was derived.  
 
In this chapter, several classical and state space methods for discretizing continuous-
time systems are developed and illustrated.   
 
1. Introduction  
 
The rapid development of digital technology continues to change the boundaries of 
control system design options. It is now routinely feasible to implement very 
complicated digital controllers and perform the extensive calculations required for their 
design. These advances in implementation and design capability can be achieved at low 
cost because of the widespread availability of inexpensive, powerful digital computers 
and related devices.  
 
A digital control system uses digital hardware, usually in the form of a programmed 
digital computer as the heart of the controller. In contrast, the controller in an analog 
control system uses analog electronics, mechanical, electromechanical or hydraulic 
devices. Digital controllers normally have analog elements at their periphery to 
interface with the plant; it is the internal workings of the controller that distinguishes 
digital from analog control.  
 
An example of a digital control system for a continuous-time plant is shown in Figure 1. 
The system has two reference inputs and four outputs, only two of which are measured 
by the two sensors. The analog-to-digital converters (A/D) perform sampling of the 
sensor signals and produce binary representations of these sensors signals.  
 
The digital controller algorithm in the digital computer then modifies sensor signals and 
generates control inputs 1( )u k  and 2 ( )u k . The control inputs 1( )u k  and 2 ( )u k  are then 
converted to analog signals via digital-to-analog converters (D/A). The analog signals 

1( )u t  and 2 ( )u t  are applied to the plant actuators or control elements to control the 
behavior of the plant.  
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Figure 1: A Digital Control System Controlling a Continuous-Time Plant 
 

2. Design of Discrete-Time Control Systems for Continuous-Time plants    
             
There are two fundamental approaches to designing discrete-time control systems for 
continuous-time plants. The first approach is to derive a discrete-time equivalent of the 
plant and then design a discrete-time controller directly to control the discretized plant. 
This approach is discussed in section 3. The other and more traditional approach to 
designing discrete-time control systems for continuous-time plants is to first design a 
continuous-time controller for the plant, then derive a discrete-time equivalent that 
closely approximates the behavior of the original analog controller.  This approach is 
especially useful when an existing continuous-time controller or a part of the controller 
is to be replaced with a discrete-time controller. Usually, however, even for small 
sampling periods, the discrete-time approximation performs less well than the 
continuous-time controller from which it was derived. The approach to deriving a 
discrete-time controller that closely approximates the behavior of the original analog 
controller is discussed in section 4.  
 
Before we discuss discrete-time equivalents of continuous-time systems, it is instructive 
to briefly discuss sampling and reconstruction in order to gain greater insight into the 
process of discretizing continuous-time systems.  
 
2.1. Sampling and A/D Conversion 
 
Sampling is the process of deriving a discrete-time sequence from a continuous-time 
function. As shown in Figure 2, an incoming continuous-time signal ( )f t  is sampled by 
an A/D converter to produce the discrete-time sequence ( )f k . Usually, but not always, 
the samples are evenly spaced in time. The sampling interval T  is generally known and 
is indicated on the diagram or elsewhere. 
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Figure 2: Sampling of a Continuous-Time Signal Using an A/D Converter 
 
The A/D converter produces a binary representation, using a finite number of bits, of 
the applied input signal at each sample time. Using a finite number of bits to represent a 
signal sample generally results in quantization errors in the A/D process. For example, 
the maximum quantization error in 16-bit A/D conversion is 2-16 = 0.0015%, which is 
very low compared with typical errors in analog sensors. This error, if taken to be 
"noise", gives a signal-to-noise (SNR) of 20log10(2-16) = 96.3 db which is much better 
than that of most control systems.  
 
The control system designer must ensure that enough bits are used to give the desired 
system accuracy. Study of the effects of roundoff or truncation errors in digital 
computation is beyond our scope in this chapter, but it is important to use adequate 
word lengths in fixed or floating point computations. Years ago, digital hardware was 
very expensive, so minimizing word length was much more important than it is today. 
 
When a continuous-time signal ( )f t  is sampled to form the sequence ( )f k , there exists 
a relationship between the Laplace transform of ( )f t  and the z-transform of ( )f k . If a 
rational Laplace transform is expanded into partial fraction terms, the corresponding 
continuous-time signal components in the time domain are powers of time, 
exponentials, sinusoids, and so on.  
 
Uniform samples of these elementary signal components have, in turn, simple z-
transforms that can be summed to give the z-transform of the entire sampled signal. 
Table 1 lists some Laplace transform terms and the resulting z-transforms when the 
corresponding time functions are sampled uniformly. 
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Table 1: Laplace and Z-Transform Pairs 

 
As an example, consider the continuous-time function with Laplace transform 
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The z-transform of the sampled signal with a sampling interval 0.1T =  seconds is 
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 2.2. Reconstruction and D/A Conversion 
 
Reconstruction is the formation of a continuous-time function from a sequence of 
samples. Many different continuous-time functions can have the same set of samples, so 
a reconstruction is not unique.  
 
Reconstruction is performed using D/A converters. Electronic D/A converters typically 
produce a step reconstruction from incoming signal samples by converting the binary-
coded digital input to a voltage, transferring the voltage to the output, and holding the 
output voltage constant until the next sample is available.  
 
The symbol for a D/A converter that generates the step reconstruction 0 ( )f t  from 
signal samples ( )f k  is shown in Figure 3(a). Sample and hold (S/H) is the operation of 
holding each of these samples for a sampling interval T  to form the step reconstruction. 
As shown in Figure 3(b), the step reconstruction of a continuous-time signal from 
samples can be represented as the conversion of the sequence ( )f k  to its corresponding 
impulse train ( )f t∗ , where 
 

0
( ) ( ) ( )

k
f t f k t kTδ

∞
∗

=

= −∑         (1) 

 
then conversion of the impulse train to the step reconstruction. This viewpoint neatly 
separates conversion of the discrete sequence to a continuous-time waveform and the 
details of the shape of the reconstructed waveform.  
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Figure 3: Digital-to-Analog (D/A) Conversion with Sample and Hold (S/H) 
 

The continuous-time transfer function that converts the impulse train with sampling 
interval T  to a step reconstruction is termed zero-order-hold (ZOH). Each incoming 
impulse in equation (1) to the ZOH produces a rectangular pulse of duration T . 
Therefore; the transfer function of the ZOH is given by: 
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oL s e
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One way to improve the accuracy of the reconstruction is to employ holds that are 
higher-order than the zero-order hold. An nth order hold produces a piecewise nth 
degree polynomial that passes through the most recent 1n +  input samples.  
 
It can be shown that, as the order of the hold is increased, a well-behaved signal is 
reconstructed with increased accuracy. For example, a first order hold (FOH) uses the 
previous two samples to construct a straight-line approximation during each interval. 
The transfer function of the FOH is: 
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A model of the FOH is shown in Figure 4(a). If the hardware of the FOH is not 
available, one can implement a FOH as shown in Figure 4(b).   
 

 

 
 

Figure 4: First-order hold reconstruction 
\ 

3. Discrete-Time Equivalents of Continuous-Time Plants 
 
The first approach to designing discrete-time control systems for continuous-time plants 
is to derive a discrete-time equivalent of the plant and then design a discrete-time 
controller directly to control the discretized plant.  
 
Consider the general configuration shown in Figure 5(a) where it is desired to design a 
discrete-time controller transfer function c ( )G z  to control the continuous-time plant 
described by the transfer function p ( )G s .  
 
The first step is to derive a discrete-time equivalent of the plant described by p ( )G s  as 
shown in Figure 5(b).  To do so, the dashed portion of Figure 5(b) has been redrawn in 
Figure 6(a) to emphasize the relationship between the discrete-time signals, ( )f k  and 

( )y k .  
 
It is desired now to find the discrete-time transfer function p ( )G z  of the arrangement, 
and this can be done by finding its pulse response.  
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Figure 5: A discrete-time equivalent of a continuous-time plant 
 
For a unit pulse input of 
 

( ) ( )f k kδ=  
 
the sampled-and-held continuous-time signal that is the input to p ( )G s  is given by 
 

0 ( ) ( ) ( )f t u t u t T= − −  
 
or 
 

0 1( )
sTeF s

s

−−
=         

where T  is the sampling interval. Then 
 

0
p p
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sTeY s F s G s G s
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and therefore 
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p p
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sTeG z G s
s

−⎡ ⎤−
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⎣ ⎦
Z         (3) 

 
where Z  is the z-transform as given in Table 1. This equivalence is shown in Figure 
6(b). 
 

 
 

Figure 6: Discretizing a continuous-time plant   
 

As a numerical example, suppose that the continuous-time transfer function of the plant 
is given by 
  

p
4( )
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G s

s s
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+
 

 
and the sampling interval is 0.2T =  seconds. According to equation (2), 
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Using table 1, the discrete-time plant transfer function, for 0.2T = , is determined using 
equation (3) as:   
  



UNESCO – 
EOLS

S

SAMPLE
 C

HAPTERS

CONTROL SYSTEMS, ROBOTICS, AND AUTOMATION – Vol  II - Discrete-Time Equivalents to Continuous-Time Systems - 
Mohammed S. Santina and Allen R. Stubberud 
 

 

©Encyclopedia of Life Support Systems (EOLSS) 

1
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Knowing p ( )G z , and returning to figure 5(b), the control system designer can now 
proceed to specify the digital controller c ( )G z  using classical design techniques to meet 
the control system requirements. The classical approach to designing a digital controller 
directly, which has many variations, parallels the classical approach to analog controller 
design. We begin with simple discrete-time controllers, increasing their complexity 
until the performance requirements can be met. Classical discrete-time control system 
design is beyond our scope in this chapter and therefore will not be discussed. 
 
In the following section, we present several methods for discretizing continuous-time 
controllers. In the latter section, the relationship between continuous-time state variable 
plant models and their discrete counterparts are derived with the results being useful for 
designing digital controllers for discrete-time systems. 
    
- 
- 
- 
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