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Summary 
 
Discrete-time digital controllers require real-time execution when connected to a real-
world plant, i.e., the controller task must be activated at fixed points in time and 
finished within a given deadline. When designing such a system, the control engineer 
must be aware of effects resulting from the finite processing power of the controller 
hardware and I/O units. Computational delays and jitter must be considered carefully 
when designing a real-time system, because they introduce varying time delays into the 
system, leading to a loss of control quality or even instability, and severe physical 
damage of the controlled system. 
 
In many cases, control applications require only one simple real-time task. The first part 
of this article describes basic implementation techniques for such simple systems, 
including a discussion of numerical integration algorithms suitable for real-time 
execution, and a comparison of fixed-point versus floating-point arithmetic. 
 
Applications with more than one real-time task require a Real-Time Operating System 
(RTOS) to manage task scheduling and pre-emption. For maintainability and security 
reasons, the task structure of a multitasking application should be kept as simple as 
possible. The intertask communication must be predictable with known delays and 
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minimal jitter. 
 
In advanced control systems, several dedicated controllers are interconnected by means 
of a communication network, thus forming a distributed embedded system. To solve the 
problem of reliable interprocessor communication arising in distributed real-time 
systems, the time-triggered architecture for safety-critical applications is described, 
where the communication schedule is completely known a priori to all nodes. 
 
An important trend for the future will be the increasing use of code generators, which 
automatically convert a high-level graphical specification of a control system into an 
executable real-time program. Furthermore, object oriented design methods based on 
the Unified Modeling Language (UML) are becoming increasingly important. These 
novel tools help to cope with the complexity of modern control systems and to 
accelerate the development process for large real-time applications. 
 
1. Introduction 
 
The mathematical foundations of discrete-time digital controllers require that the 
algorithm is executed exactly at predefined points in time. When implementing a 
controller on a real-world computer and connecting it to a real-world plant, it is hard to 
fulfill this timing requirement. The developer of such a system must be aware of the fact 
that this algorithm may be invoked at inaccurate times, cannot be executed infinitely 
fast, and may be interrupted by other high-priority computations. Inaccurate timing 
introduces all kinds of delays into the control system that may lead to unexpected 
behavior, or even instability. The basic effects of real-time execution and real-time 
communication will be discussed in this article, including practical implementation 
methods to cope with problems arising in this area. 

 

 
 

Figure 1. Notations describing a real-time task. 
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Figure 1 introduces some basic notations, which are commonly used to describe the 
timing of real-time systems. A task is the execution of a sequential program under the 
control of an operating system. The task request time is the point in time when the 
execution of a task is initiated. For a discrete-time digital controller, the task request 
times have a fixed period, which is equal to the sample time of the controller. The 
latency is the time span from the initial task request until the processor jumps to the 
requested task, which includes the time necessary to finish other high-priority 
computations and to perform the context switch. At some point of the running task, the 
results will be available, i.e., the actuators of the control system are updated. The time 
from the task request until the availability of the results to the outside world is called 
computational delay. The computational delay should be considered carefully when 
designing the control system. At the end of the task, some cleanup actions are 
performed. The total time required to perform all computations of a task is called 
execution time. The execution time may vary from one task invocation to another if 
some actions are performed conditionally, i.e., the program takes different execution 
paths. The resulting worst case execution time (WCET) is another important property 
characterizing a task. 
 
The real-time execution of a task is determined by a deadline, which specifies the point 
in time when a real-time task must definitely be finished. This requirement is called 
hard real-time constraint, in comparison to soft real-time systems where deadlines must 
only be met on average. The following focuses on hard real-time systems only. 
 
Note that, for a periodic task, the deadline interval must be less than the sample time to 
leave some time for other tasks and perform the necessary context switches. The time 
span from the end of a task until the deadline is called laxity. One design goal for a 
proper real-time implementation will be to maximize the laxity. 
 
The first part of this article concentrates on simple applications with only one real-time 
task executing a control algorithm. The discussion includes the effects of execution time 
jitter, numerical integration algorithms suitable for real-time applications, and a 
comparison of fixed-point versus floating-point arithmetic. The second part of this 
article introduces real-time operating systems (RTOS) for multitasking applications, 
including interprocessor communication, and distributed embedded real-time systems. 
Finally, novel programming techniques, like automatic code generation and UML based 
software design methods are discussed, which will significantly change the 
development process for real-time software in the future. 
 
2. A Simple Real-Time System 
 
It is not always necessary to run a control algorithm in a full real-time operating system 
environment. For many small applications with only one real-time task, a simple 
implementation scheme is sufficient. The heart of such a minimal real-time program is a 
so-called interrupt service routine (ISR), which is invoked periodically by the timer of 
the controller hardware (see Figure 2). ISRs are similar to real-time tasks, but they are 
not under the control of an operation system. When a timer interrupt is received, the 
processor jumps to the ISR and computes one step of the control algorithm. After 
finishing the ISR, the processor returns to the interrupted background process and 
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continues computations there. 
 

 
 

Figure 2. Timing diagram of a simple real-time program. 
 

 
 

Figure 3. Typical real-time interrupt service routine (ISR). 
 
Figure 3 shows an ISR in greater detail with the typical sequence of commands to be 
performed for a control application. As an example, the right side of Figure 3 shows the 
C code which implements a simple PI controller with the state equations 
 

( 1) ( ) ( )
( ) ( ) ( )I P

x k x k u k
y k K x k K u k
+ = +

= +
  

 
One of the first actions performed in the ISR is the overload check. The processor is 
overloaded if the ISR is still active at the time it is invoked again by the next interrupt. 
This means that computations could not be finished within the given deadline. Such a 
fatal violation of the real-time constraint must be signaled to the supervisory code by 
setting an overload flag. 
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After reading the sensor signals and computation of the control algorithm, the outputs 
are immediately written to the actuators. This is done as early as possible to minimize 
the delay between the interrupt and the availability of the results. The ISR is completed 
by updating the state variables of the controller for the next sample step. Finally, some 
cleanup actions are performed and the processor registers are restored before leaving the 
ISR. 
 
So far, only the real-time portion of the application was discussed. The full program 
also consists of a startup procedure and the so-called background process, which is 
executed while the ISR is not active (see Figure 4). At program start, the main() 
function first initializes all I/O units and sets the period of the timer interrupts equal to 
the sample time. After finishing all initializations, interrupts are enabled to start the real-
time execution of the control algorithm. While the background process is periodically 
interrupted by the ISR, it executes the supervisory code in an endless loop. The 
supervisory code is responsible for reporting error conditions and for exchange of non-
time-critical data with the man-machine-interface, which may be located on another 
node in the network. 
 
The man-machine-interface visualizes signals from the real-time system and manages 
user commands like stopping and restarting the controller by sending appropriate 
signals to the real-time system. It may also provide instruments to modify controller 
parameters within given limits. Note that the controller states must be re-calculated 
properly when the parameters are changed at run-time to enable bumpless transitions. 
Also, changing a parameter set at run-time must be synchronized with the controller 
task. Typically, the complete new parameter set is provided in a buffer, and the 
controller just sets a pointer to the active buffer at the beginning of the real-time task. 

 

 
 

Figure 4. Typical main() function and background process. 
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3. Computational Delay and Jitter 
 
On real-world hardware, a control algorithm cannot be executed infinitely fast. There 
will be a time delay between the beginning of a sample interval, i.e., the activation of 
the ISR, the reading of sensors and the final update of the actuators. This time span is 
called the computational delay. 
 
The computational delay depends on the processor speed and the complexity of the 
control algorithm. From the control engineers perspective, it introduces a phase shift 
into the system, as shown in Figure 5. For some applications, the computational delay 
might be negligible, but for others it is crucial to take this effect into account from the 
beginning when the controller is designed. Otherwise the control quality suffers, or the 
system might even become unstable in critical cases. Normally, the computational delay 
will be incorporated in the actuator model and regarded as a part of the plant model 
when calculating the controller parameters. 
 

 
 

Figure 5. Controller with computational delay. 
 
It is difficult to predict the computational delay for a control algorithm on given target 
hardware. It depends on many parameters, including processor speed, memory chips, 
caching effects, compiler optimizations, etc. Although there are some utilities available 
to calculate execution times for a given hardware architecture, the most practical 
approach is still to measure the computational delay directly, for example, by reading 
the timer, or using an oscilloscope. If the computational delay is significant compared to 
the time constants of the system, the controller parameters must be re-calculated 
assuming an ideal controller and regarding the delay as part of the plant model (Figure 
5). 
 

 
 

Figure 6. Timing diagram with jitter of input and output statements. 
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The situation becomes even worse if the program contains parts that are executed 
conditionally, for example, if different controller modes are selected depending on the 
operating point. Due to the varying execution time when the program takes different 
execution paths, there is a jitter in the time between two sensor or actuator updates as 
shown in Figure 6.  

 
T  Sample time of the controller. 

OT  Mean execution time from the beginning of the ISR until the update of the 
outputs. 

j Difference between the maximum and minimum value of OT . 
 
Note that the time between two output updates varies from T j−  up to T j+ , i.e. 
the maximum difference is 2 j . The following numerical example shows the 
importance of the jitter effect: 
 
Suppose a signal with 10 V amplitude and 1 kHz frequency is sampled with a 16-bit 
A/D converter. The rise time of the signal is  
 

max max
sin( ) 62dy d mVA t A

dt dt s
ω ω

μ
= = =            (1) 

 
and the resolution of the A/D converter is 
 

2 20 0.31
655362n

A Vr mV= = =            (2) 

 
which means that with a jitter of 1 μs, the uncertainty of the measurement is 200 times 
the resolution of the A/D converter. In other words, roughly 8 bits of precision are lost 
in the worst case!  
 
For a control algorithm without direct feedthrough ( 0PK = ), the output jitter can be 
significantly reduced by writing the outputs at the beginning of the next sample interval, 
i.e., by pre-computing the controller output for the next sample step at the end of the 
current step. 
 
With this implementation policy, the output jitter is independent of the execution time 
of the control algorithm.  
 
It should be mentioned here that a prerequisite for good control quality is an accurate 
sensor interface. If the sensors are exposed to deterministic or stochastic disturbances, 
analog pre-filters, anti-aliasing filters, or over-sampling methods should be applied to 
reduce the noise and to remove high frequency disturbances from the input signal before 
using it in the control algorithm. When initializing the controller, the filter states should 
be initialized properly. For example, if a temperature sensor is connected to a low pass 
filter, the low-pass state variable should be initialized with the current temperature 
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rather than with zero. 
 

void TimerISR(void) 
{ 
    EnterISR(); 
    WriteDAC(y); 
    u = ReadADC(); 
    x = UpdateEquation(x,u);        /* compute x(k+1) 
*/    y = OutputEquation(x);          /* compute y(k+1) 
*/ 
    LeaveISR(); 
} 

 
- 
- 
- 
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