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Summary

A general adaptive inverse compensation approach is presented for control of plants
with actuator imperfections caused by nonsmooth nonlinearities such as dead-zone,
backlash, hysteresis and other piecewise-linear characteristics. An adaptive inverse is
employed for compensating the effect of actuator nonlinearity with unknown
parameters, and a linear feedback control law is used for controlling the dynamics of a
linear or smooth nonlinear part following the actuator nonlinearity. State feedback and
output feedback control designs are presented which all lead to linearly parameterized
error models suitable for developing adaptive laws to update the inverse parameters.
Neural networks and Fuzzy Logic can be also used to adaptively estimate the inverse of
the actuator nonlinearity. This approach suggests that control systems with commonly-
used linear or nonlinear feedback controllers such as those with model reference, PID,
PD, pole placement, feedback linearization, backstepping or other control designs can
be combined with an adaptive inverse for improving system tracking performance
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despite the presence of actuator imperfections.
1. Introduction

Adaptive control is a control methodology which provides adaptation mechanisms to
adjust controllers for systems with parametric, structural and environmental
uncertainties to achieve desired system performance. Payload variation or component
aging causes parametric uncertainties, component failures leads to structural
uncertainties, and external noises are typical environmental uncertainties. Such
uncertainties often appear in control systems such as those in electrical, mechanical,
chemical, aeronautical, and biomedical engineering.

Adaptive control of linear systems has been extensively studied. Systematic design
procedures have been developed for model reference adaptive control, pole placement
control, self-tuning regulators, and multivariable adaptive control. Robustness of
adaptive control schemes with respect to modeling errors such as unmodeled dynamics,
parameter variations and external disturbances has been a hot research topic. Recently
adaptive controllers have been developed for nonlinear systems such as pure-feedback
systems and feedback linearizable systems with sufficiently smooth nonlinearities.

Nonsmooth nonlinear characteristics such as dead-zones, backlash and hysteresis are
common in actuators, such as mechanical connections, hydraulic servo-valves,
piezoelectric translators, and electric servomotors, and also appear in biomedical
systems. They are usually poorly known and may vary with time. They often severely
limit system performance, giving rise to undesirable inaccuracy or oscillations or even
leading to instability. The development of adaptive control schemes for systems with
actuator imperfections caused by such nonlinearities has been a task of major practical
interest.

Recently, an adaptive inverse approach has been developed to deal with systems with
nonsmooth actuator nonlinearities. A typical control scheme consists of an adaptive
inverse for compensating the effect of an unknown actuator nonlinearity such as a dead-
zone, backlash, hysteresis, or a piecewise-linearity, and a state or output feedback
design for a linear or nonlinear dynamical system. The adaptive inverse approach has
been unified for adaptive output feedback control of linear systems with unknown
actuator or/and sensor dead-zone, backlash and hysteresis, based on a model reference
control method for systems with stable zeros.

Several other methods have also been used for dead-zone or hysteresis compensation
control. Essentially, these methods apply to systems with non-smooth nonlinearities
present at the input or at the output. A two-layered fuzzy logic controller consisting of
fuzzy logic based pre-compensator followed by a fuzzy PD controller can be used. This
controller is robust to variations in dead-zone nonlinearities. A class of integral,
hysteretic control influence operators has been derived for the representation of
structural systems exhibiting hysteresis due to active materials. The hysteretic influence
operator is defined in terms of a probability distribution that describes the concentration
of a particular hysteresis kernel. Once the hysteretic operators are identified, their
feedforward approximate inverses are built to compensate them in adaptive control
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schemes. An adaptive fuzzy logic pre-compensator has been for proposed for dead-zone
compensation in nonlinear systems. The classification property of fuzzy logic systems is
used for offsetting the dead-zone that has a strong dependence on the region in which
the argument occurs. Different control algorithms for hard disk drives (HDDs) have also
been designed and evaluated for friction modeling, estimation and compensation.
Model-free control design approaches based on neural networks and fuzzy systems are
developed to deal with dynamical systems with actuator nonlinearities.

The essence of the adaptive inverse approach is that, upon an adaptation transient, the
inverse cancels the effects of the unknown nonlinear characteristic so that a significant
improvement of accuracy and performance is achieved with control algorithms rather
than with more expensive components without imperfections. There are many new
technical issues for utilizing such an approach: system modeling, parameterization of
inverse models, output matching control, fixed inverse compensation, adaptive inverse
compensation, reduced-order control, continuous-time inverse control, discrete-time
inverse control, hybrid inverse control, implicit inverse, explicit inverses, gradient-type
adaptive designs, Lyapunov-type adaptive designs.

In this chapter, we describe how such an adaptive inverse approach can be combined
with popular control methods such as pole placement, PID, model reference and how it
can be applied to multivariable or nonlinear dynamics with actuator nonlinearities. In
Section 2, we present a general parameterized actuator nonlinearity model illustrated by
a dead-zone characteristic. In Section 3, we propose a parameterized inverse for
compensating the actuator nonlinearity, illustrated by a dead-zone inverse. In Section 4,
we design state feedback adaptive inverse control schemes, while in Section 5, we
develop a general output feedback adaptive inverse control scheme. In Section 6, we
present three output feedback designs: model reference, pole placement, and PID as
examples of the general control scheme of Section 5. In Section 7, an output feedback
adaptive inverse control scheme for plants with unknown dynamics with unknown input
nonlinearity is presented. We also present feedback adaptive inverse control schemes in
Section 8 for multivariable linear plants with actuator nonlinearities, using adaptive
parameter update laws based on a coupled estimation error model or a Lyapunov design,
and in Section 9 for smooth nonlinear dynamics with nonsmooth actuator nonlinearities,
using feedback linearization and an adaptive basckstepping design. In Section 10, we
present an adaptive inverse control scheme using an output tracking controller and a
neural network based inverse compensator for systems with smooth nonlinear dynamics
and unknown nonsmooth actuator nonlinearities. In Section 11, we present an
illustrative example to show the damaging effect of actuator backlash nonlinearity on
performance of a feedback system with a PI controller, and the desirable compensation
ability of an adaptive backlash inverse in improving system performance in the presence
of an uncertain backlash characteristic.

2. Plants with Actuator Nonlinearities

Consider the plant with a nonlinearity N (-) at the input of a linear part G(D):

y(t) =G(D)[u](t), u(t) = N(v(1)), @
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where N(-) represents an actuator uncertainty, such as a dead-zone, backlash,
hysteresis or piecewise-linear characteristic, with unknown parameters, V(t) is the
applied control, u(t) is not accessible for either control or measurement, and G(D) is

a rational transfer function either in continuous time (when D denotes either the
Laplace transform variable or the time differentiation operator : D[X](t) = X(t)) or in

discrete time (when D denotes either the z-transform variable or the time advance
operator: D[X](t) = x(t +1)), for a unified presentation. The case when G(D) is

replaced by a nonlinear dynamics is considered in Section 9.

The control objective is to design an adaptive compensator to compensate the effect of
the uncertain actuator nonlinearity N (-) so that a commonly-used control scheme for

the linear part G(D) can be used to ensure desired system performance. To achieve

such an objective, there are two key tasks: one is the clarification of the class of actuator
nonlinearities for which such compensators can be developed, and the other is the
design of adaptive laws which can effectively update the compensator parameters. In
this section, we fulfil the first task by presenting a parameterized nonlinearity model
suitable for adaptive compensation schemes to be developed in the next sections.

Nonlinearity Model. Dead-zone, backlash, hysteresis, and piecewise-linear
characteristics are representatives of an actuator nonlinearity N(-). These nonlinear

characteristics have break points so that they are nondifferentiable (nonsmooth) but they
can be parameterized. Their parameterized models can be unified as

u(t) = N(v(t)) = N(6";v(t)) ==6" 0" (t) + a" (1), 2

where 0" € R™(ny>1) is an unknown parameter vector, and ®"(t) € R™ and

a”(t) € R whose components are determined by the signal motion in the nonlinear
characteristic N (-) and therefore may be also unknown.

A Dead-Zone Example. To illustrate the nonlinearity model (2), let us consider a dead-
zone characteristic DZ (+) with the input-output relationship:

m (v(t)—b,) if v(t)=h
u(t) = N(v(t)) = DZ(v(t)) =1 0 if b <vt)<b @
m (v(t) —b) if v(t)<h,

where m, >0, m; >0, b, >0, and b <O are dead-zone parameters.

Introducing the indicator function [ X ] of the event X :
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X]= 1if X istrue @
K217 0 otherwise
we define the dead-zone indicator functions
% (1) = x[u(t) > 0] (5)
i () =x[u(t) <0]. (6)
Then, introducing the dead-zone parameter vector and its regressor
0% = (m,,m,b,,m, mb)" (7)
" (1) = (=1 OV, % (©), = OV 21 ) (8)

we obtain (2) with a”(t) = 0 for the dead-zone characteristic (3).

For a parameterized nonlinearity N(-) in (2), we will develop an adaptive inverse as a
compensator for compensating N (-) with unknown parameters.

3. Parameterized Inverses

The essence of the adaptive inverse approach is to employ an inverse

v(t) = NI (Ug (1)) (©)

to compensate the effect of the unknown nonlinearity N(-), where the inverse

characteristic N\I() is parameterized by an estimate O of 0", and Ug (t) is a desired

control signal from a feedback law. The key requirement for such an inverse is that its
parameters can be updated from an adaptive law and should stay in a pre-specified
region needed for implementation of an inverse. In our designs, such an adaptive law is
developed based on a linearly parameterized error model and the parameter boundaries
are ensured by parameter projection.

Inverse Model. A desirable inverse (9) should be parameterizable as
ug (t) =—6" (too(t) + a(t) (10)

for some known signals o(t) € R™ and a(t) € R whose components are determined

by the signal motion in the nonlinearity inverse Kl\l() such that v(t), o(t) and a(t)
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are bounded if Uy (t) is. The error signal due to an uncertain N(-) is
d,(1)=6"" (o(t) ~ " (®) +a" () - a(t), (11)

which should satisfy the conditions that d,(t) is bounded, t>0, and that
d,(t)=0,t >t,, if O(t) =0",t >t,, and N\I() is correctly initialized: d (t;) =0.

Inverse Examples. The inverses for a dead-zone, backlash, hysteresis, and piecewise-
linearity have such desired properties. Here we use the dead-zone inverse as an

illustrative example. Let the estimates of m/Mb,,m.,mb;,m be denoted as

— N/~

m,b,,m,,mb,, m, , respectively. Then the inverse for the dead-zone characteristic (3)
is described by

ﬁ&%ﬂﬂwfwa)>o

r

v(t) = NI (uy (1)) = DI (ug (1)) =10 if uy(t)=0 (12)

ug ()+miby
= if ug(t)<0.

For the dead-zone inverse (12), to arrive at the desired form (10), we introduce the
inverse indicator functions

% (®) = x[v(t) > 0] (13)

10 ®) = 7[v(t) < 0] (14)

and the inverse parameter vector and regressor

0 = (m,m,b,,mmyby,)’ (15)
o(t) = (~1, OV, 2%, (1), =0 (OV(E), 2 @) (16)

Then, the dead-zone inverse (12) is

Ug (8) = My, (VL) — meby e () + My (E)VEE) — myby 7, (1)

(17)
=— 0" o(t)

that is, a(t) =0 in (10). It follows from (7), (8), (11) and (16) that
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dy (1) =0T o(t)x[u(t) =0]
— _my[0<Vv(t) <b,J(V(t)=b,) (18)
—myy[by <v(t) <OJ(v(t)-by)

which has the desired properties that d,,(t) is bounded for all t >0 and that d,(t)=0
whenever 0=07. Furthermore, d,(t) =0 whenever v(t) >b, or v(t) <by, that is,

A
when u(t) and v(t) are outside the dead-zone, which is the case when b, :mn:Tbr > b,

r

—

A
ST mb
and b|:%£b|.
my

Control Error: It is important to see that the inverse (10), when applied to the
nonlinearity (2), results in the control error

u(t) —Uq (£) = (0-6")" w(t) +d, (1), (19)

which is suitable for developing an adaptive inverse compensator. For the adaptive
designs to be presented in the next sections, we assume that the inverse block (9) has the

form (10) and d,,(t) in (11) has the stated properties. We should note that the signals

a“(t) in (2) and a(t) in (10) are non-zero-if the nonlinearity N(-) and its inverse
NI (-) have inner loops as in the hysteresis case.
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