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Summary  
 
This chapter gives an overview of frequency domain identification methods for single 
input, single output systems. Estimators such as the (weighted) linear least squares, the 
nonlinear least squares, the (weighted) total least squares, the maximum likelihood, and 
the subspace algorithms are discussed in detail.  
 
The interrelation between the different approaches is highlighted through a study of the 
(equivalent) cost functions. Special attention is also paid to global minimizers that try to 
approximate the maximum likelihood estimator. The properties of the different 
approaches are illustrated by means of an “on-line” simulation example. A theoretical 
toolbox is provided that allows us to verify quickly the basic properties of the estimators 
through some elementary manipulations of the cost function. 
 
1. Introduction 
 
In this chapter we handle the identification of the plant model assuming that the noise 
model is known exactly. We give an overview of frequency domain identification 
methods for single input single output systems (Section 3). Afterwards, the 
particularities of systems with time delay (Section 5.1), systems in feedback (Section 
5.2) and high order systems (Section 5.3) are discussed.  
 
A second-order system 2( , ) 1/(1 )G s s sθ = + +  is used as “on-line” illustration in Section 
3. Figure 1 shows the true transfer function and the simulated noisy frequency response 
data (see Appendix for more information concerning the generation of the simulation 
data). 
 
Before starting with the overview, we discuss the type of data (experiments) we can 
handle (Section 1.1), introduce some notations for the parametric plant models (Section 
1.2) and present the general form of the identification algorithms (Section 2.1). Section 
2.3, quick tools to analyze estimators, makes it possible to reveal some basic properties 
of estimators through a simple analysis of the cost function.  
 
Combined with Section 2.4, which gives the general asymptotic properties of estimators 
minimizing a cost function that is quadratic-in-the-measurements, it allows an easy 
verification and understanding of the properties of the different estimators described in 
Section 3. 
 
To simplify the notations we limit the discussion in this chapter to (broad band) periodic 
excitations. The results are, however, also valid for broad band random excitations. 
Indeed, the non-periodicity of the excitation signal simply results in an additional 
polynomial in the transfer function model (see Frequency Domain System 
Identification, Section 3.2.1). 
 



UNESCO – 
EOLS

S

SAMPLE
 C

HAPTERS

CONTROL SYSTEMS, ROBOTICS, AND AUTOMATION - Vol. V - Estimation With Known Noise Model - R. Pintelon and J. 
Schoukens 

©Encyclopedia of Life Support Systems (EOLSS) 

 
 

Figure 1. Second-order example 2( , ) 1/(1 )G s s sθ = + + : true transfer function (solid 
line) and simulated noisy data (dots). 

 
1.1. Frequency Domain Data 
 
The identification starts from measured input/output (DFT) spectra ( )U k , ( )Y k , 
 

0

0

( ) ( ) ( )
( ) ( ) ( )

Y

U

Y k Y k N k
U k U k N k

= +

= +
       (1) 

 
with 0 ( )U k , 0 ( )Y k  the true unknown values, or from a measured frequency response 
function (FRF) ( )kG Ω , 
 

0( ) ( ) ( )k k GG G N kΩ = Ω +        (2) 
 
with 0 ( )kG Ω  the true unknown value, at a set of F  frequencies , 1, 2, ,k k FΩ = … , 
which may be a (sub)set of the DFT frequencies. Note that (2) is a special case of (1) 
with ( ) ( )kY k G= Ω  and ( ) 1U k = . The 2F  complex valued vector Z  contains the 
measured input/output (DFT) spectra 

[ (1) (2) ( )] with ( ) [ ( ) ( )] , 1, 2, ,T T T T TZ Z Z Z F Z k Y k U k k F= = =… …  (3) 
 
It is related to the true values by 0 ZZ Z N= + , where the disturbing noise ZN  has zero 
mean and is independent of 0Z . 
 
The frequency domain data (1), (2) can be obtained via time domain or frequency 
domain experiments. In a time domain experiment a broad band periodic excitation is 
applied to the plant and the steady state response is observed over an integer number of 
periods. N  samples of the input and output signals are measured. These N  
input/output samples are transformed to the frequency domain using the discrete Fourier 
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transform. /2 1F N≤ +  DFT frequencies of the input and output DFT spectra are used 
for the identification. In a frequency domain experiment a single sine excitation is 
applied to the plant and the input/output spectra of the steady state response are 
measured at the excited frequency. This experiment is repeated at F  different 
frequencies. For example, high frequency network analyzers (micro-wave 
measurements) and impedance analyzers follow this measurement procedure. Also most 
dynamic signal analyzers have such a measurement mode. For both experiments the 
frequency domain errors ( )UN k  and ( )YN k  in (1) are related to the noise sources in 
Fig. 2 as 
 

0( ) ( ) ( ) ( ) ( )

( ) ( ) ( )
Y g k Y P

U g U

N k N k G M k N k

N k N k M k

= Ω + +

= +
     (4) 

 

 
 

Figure 2. Measurement of a plant using a time or frequency domain experiment. ( )gN k  

is the generator noise, ( )UM k  and ( )YM k  are the input and output measurement errors, 
and ( )pN k  is the process noise. 

 
with 0 ( )kG Ω  the plant transfer function. 
 
Due to the imperfections of the measurement devices it is recommended not to use 
measurements at DC and in the neighborhood of the Nyquist frequency. Indeed, 
acquisition units mostly introduce DC offset errors and anti-alias protection is mostly 
only guaranteed up to about 80% of the Nyquist frequency.  
 
The measurements can also be the result of a linearization of a nonlinear system at an 
operating point. This will introduce DC-values in the input and output signals which are 
not compatible with the linear model, and hence should be removed. 
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Ideally we would like to know the properties of an estimator for each finite value of F . 
Except for the (weighted) linear least squares, this is only possible for “sufficiently 
large”, values of F . To analyze the stochastic properties of the estimators for F  
“sufficiently large” we will make a mental experiment where the number of frequencies 
F  tends to infinity. 
 
 For a frequency domain experiment this implies that the number of single sine 
measurements F  tends to infinity, while for a time domain experiment this implies that 
the number of measured time domain samples N  tends to infinity. Note that we do not 
consider time domain experiments ( )N →∞  with periodic signals containing a fixed 
number (independent of N ) of frequencies F . Indeed, for such experiments the signal-
to-noise ratio tends to infinity as N →∞  at the excited DFT frequencies, and hence all 
the estimators considered in Section 3 would be consistent in a trivial manner. For broad 
band multisine excitations the signal-to-noise ratio per spectral line remains an 0( )O N  
so that consistency is a non-trivial issue. 
 
1.2. Plant Model 
 
For periodic excitations the true input and output DFT spectra are related by 
 

0
0 0 0 0 0( ) ( , ) ( ) with ( , )  and [ , , , , , ]

b

a ba

n r
r Tr

k n nn r
rr

b
Y k G U k G a a b b

a
θ θ θ= Ω

= Ω Ω = =
Ω

∑
∑

… …  (5) 

 
where 1z−Ω =  for discrete-time systems, sΩ =  for continuous-time system, sΩ =  
for diffusion phenomena and Rtanh( )sΩ = τ  for commensurate micro-wave filters. In 
practice the true input/output DFT spectra 0 ( )U k , 0 ( )Y k  and the true model parameters 

0θ  are unknown so that ( ) ( , ) ( ) 0kY k G U kθ− Ω ≠ . For any parameterization given in 
Section 3.2.1 of Frequency Domain System Identification (rational form, partial fraction 
expansion and state space representation) we can use the output error which is the 
difference between the observed output ( )Y k  and the modeled output ( , )kY θΩ  
 

( ) ( , ) with ( , ) ( , ) ( )k k kY k Y Y G U kθ θ θ− Ω Ω = Ω     (6) 
 
For the rational form (5), it is convenient also to introduce the equation error 

( , , ( ))ke Z kθΩ  which is the difference ( ) ( , ) ( )kY k G U kθ− Ω  multiplied by ( , )kA θΩ  
 

( , , ( )) ( , ) ( ) ( , ) ( )k k ke Z k A Y k B U kθ θ θΩ = Ω − Ω     (7) 
 
Unless mentioned otherwise, we will assume that the parameterization of the plant 
model is identifiable. It implies that the parameter vector θ  contains only the free 
parameters of the model; for example, all the numerator and denominator coefficients of 
the rational form ( , )G θΩ  in (5) except 0 1a = . Note, however, that from a numerical 
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point of view it is often better to use the full overparameterized form in combination 
with dedicated numerical methods (Pintelon and Schoukens, 2001). 
 
1.3. Noise Model 
 
The measured input/output (DFT) spectra ( )U k , ( )Y k , are related to the true unknown 
values 0 ( )U k , 0 ( )Y k  by 
 

0

0

( ) ( ) ( )
( ) ( ) ( )

Y

U

Y k Y k N k
U k U k N k

= +

= +
       (8) 

 
where ( )UN k , ( )YN k  are circular complex distributed random variables with zero 
mean and second order moments 
 

2 ( ) { ( ) ( )} and { ( ) ( )} 0 for ,  and/or VW V W U Vk E N k N k E N k N k V W Y Uσ = = =  (9) 
 
(Picinbono, 1993). Eq. (9) implies that the real and imaginary parts of the noise are 
uncorrelated and have equal variance. These conditions are met in practice for a time 
and frequency domain experiment (Brillinger, 1981). It is also assumed that the 
input/output disturbances ( )UN k , ( )YN k  are independent of the true (unknown) 
excitation 0 ( )U k . 
 
2. Estimation Algorithms – General 
 
2.1. General Form of Cost Functions 
 
Most algorithms discussed in this chapter minimize a “quadratic-like” cost function 

( , )V Zθ  
 

2
1( , ) ( , ) ( , ) ( , , ( ))FH

kkV Z Z Z Z kθ ε θ ε θ ε θ== = Ω∑     (10) 
 
where the residual ( , , ( ))k Z kε θΩ  is a weighted version of the output error 

( ) ( , )kY k Y θ− Ω  (6) or the equation error ( , , ( ))ke Z kθΩ  (7). Note that 

[ ]( , ) ( , , ( ))k kZ Z kε θ ε θ= Ω  depends on the measurements at frequency kΩ  only. The 

minimizer of (10) is denoted by ˆ( )Zθ . 
 
A first important subclass of (10) are the cost functions ( , )V Zθ  which are quadratic-in-
the-measurements Z . For these cost functions the residual ( , )Zε θ  is linear in 

0 ZZ Z N= +  and can be written as 
 

0( , ) ( , ) ( , )ZZ Z Nε θ ε θ ε θ= +        (11) 
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with ( ,0) 0ε θ = . Using (11), (10) becomes 
 

0 0( , ) ( , ) ( , ) 2Re( ( , ) ( , ))H
Z ZV Z V Z V N Z Nθ θ θ ε θ ε θ= + +    (12) 

 
Examples are the linear least squares (Section 3.1), the nonlinear least squares (Section 
3.2), the total least squares (Section 3.3), and the maximum likelihood (Section 3.4) 
estimators. 
 
A second important subclass of (10) is that of the cost functions ( , ) ( , ( ), )V Z f Z Zθ θ η=  
which depend on an initial guess ( )Zη  of the model parameters, 
 

2
1( , ) ( , ) ( , ) ( , , ( ), ( )) ( , ( ), )FH

kkV Z Z Z Z Z k f Z Zθ ε θ ε θ ε θ η θ η== = Ω =∑  (13) 
 
and which are quadratic-in-the-measurements Z  when ( )Zη  in (13) is replaced by a 
non-random vector η . The weighted linear least squares (Section 3.1) and bootstrapped 
total least squares (Section 3.5) belong to this class. 
 
To study the asymptotic behavior of the identification algorithms it is convenient to 
scale the cost function with the number of frequencies, ( , ) ( , )/FV Z V Z Fθ θ= . The 

expected value of the cost function ( ) { ( , )}F FV E V Zθ θ=  and its minimizer 0( )Zθ�  play 

an important role in the convergence analysis of the estimate ˆ( )Zθ .  
 
Indeed, under some suitable assumptions (see Pintelon and Schoukens, 2001) it can be 
shown that ˆ( )Zθ  converges (in some stochastic sense) to 0( )Zθ�  (see also Section 2.4). 

Hence, the consistency (convergence to the true value 0θ ) of ˆ( )Zθ  can be verified by 

simple analysis of ( )FV θ . When model errors are present, then 0 0( )Zθ θ≠�  and 0( )Zθ�  
will vary as the number of frequencies F  increases.  
 
The deterministic convergence of 0( )Zθ�  to some limit value θ∗ , depends on the way 
data (frequencies) are added in the time or frequency domain experiment. The notations 
introduced are summarized in Table 1. 
 

Cost 
function 

( , )/
( , )

( , ( ), )/F
V Z F

V Z
f Z Z F
θ

θ
θ η

⎧
=⎨
⎩

 
{ ( , )/ }

( , )
{ ( , ( ), )/ }F

E V Z F
V Z

E f Z Z F
θ

θ
θ η

⎧
=⎨
⎩

 
( ) lim ( )FF

V Vθ θ∗ →∞
=  

Minimizer ˆ( )Zθ  0( )Zθ�  0lim ( )
F

Zθ θ∗ →∞
= �  

 
Table 1. Overview of notations frequently used. ( )Zη  is an (initial) estimate of the 

model parameters and η∗  is its limit value. 
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2.2. Minimization of Cost Functions 
 
Often, a Newton-Gauss type algorithm is used to find the minimizer ˆ( )Zθ  of (10). 

Rewriting (10) as re re( , ) ( , ) ( , )TV Z Z Zθ ε θ ε θ= , where re( )  stacks the real and 
imaginary parts on top of each other, 
 

re
Re( ( , ))

( , )
Im( ( , ))

Z
Z

Z
ε θ

ε θ
ε θ

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

       (14) 

 
the i th iteration step of this algorithm is given by 
 

( 1) ( 1) ( ) ( 1) ( 1)
re re re re( , ) ( , ) ( , ) ( , )T i i i T i iJ Z J Z J Z Zθ θ θ θ ε θ− − − −Δ = −   (15) 

 
with ( ) ( ) ( 1)i i iθ θ θ −Δ = −  and ( , ) ( , )/J Z Zθ ε θ θ= ∂ ∂  the Jacobian of the vector ( , )Zε θ . 
Using complex numbers, (15) can be written as 
 

( 1) ( 1) ( ) ( 1) ( 1)Re( ( , ) ( , )) Re( ( , ) ( , ))H i i i H i iJ Z J Z J Z Zθ θ θ θ ε θ− − − −Δ = −  (16) 
 
If the algorithm converges to the global minimum, then, ( )ˆ( )Zθ θ ∞= . When identifying 
continuous-time systems in the -s  and s -domains, it is indispensable to scale the 
frequency axis (and hence also the parameters) to guarantee the numerical stability of 
the normal equations (15). Without scaling, identification in the -s  and s -domains is 
often impossible with the available computing precision, even for modest orders of the 
transfer function. Although the scale factor which minimizes the condition number of 

( 1)
re ( )iJ Zθ −  is plant and model dependent, a good compromise is to use the arithmetic 

mean of the maximum and minimum angular frequencies in the frequency-band of 
interest: scale max min( ) / 2ω = ω +ω . For example, the term m

ma s  becomes after scaling 

scale scale( / )m m
ma sω ω  and scale

m
ma ω  is estimated. The numerical stability can still be 

improved by solving the overdetermined set of equations 
 

( 1) ( ) ( 1)
re re( , ) ( , )i i iJ Z Zθ θ ε θ− −Δ = −       (17) 

 
instead of (15), for example, using the singular value decomposition or a QR-
factorization (Golub and Van Loan, 1996). The convergence region of the Newton-
Gauss algorithm can be enlarged by using a Levenberg-Marquardt version of (15) and 
(17) (see Fletcher, 1991 and Appendix).  
 
2.3. Quick Tools to Analyze Estimators 
 
The minimum we can expect from a “sound” estimator is that in the noiseless case we 
get the true answer (correctness property). In the noisy case we should get 
asymptotically ( )F →∞ , the true answer (consistency property) and hopefully a 
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“small” uncertainty (efficiency property). We may also wonder whether the estimates 
depend on the particular parameter constraint chosen ( 0 1a = , or 2

2|| || 1θ = , or …), how 
fast the estimates converge, and what happens with the estimates if the true model does 
not belong to the considered model set. Some of the previously raised questions can 
easily be analyzed using the following quick tools. The first step in the analysis consists 
of calculating the (equivalent) cost function ( , )V Zθ  of the identification method. Next 
we verify the following:- 
 

1. correctness: assuming that the true model belongs to the model set, the 
identification algorithm is correct if it produces the true model for a finite 
amount of noiseless ( 0)ZN =  data. This is true if 0( , )FV Zθ  is minimal in the 
true model parameters 0θ . All the identification algorithms of Section 3 are 
correct. 

 
2. consistency: the (equivalent) cost function minimized by most identification 

methods in this chapter is a quadratic function of the measurements Z . The 
expected value of such cost functions can be written as  

 
  0( ) { ( , )} ( , ) { ( , )}F F F F ZV E V Z V Z E V Nθ θ θ θ= = +    (18) 
 

 (see (12), 0Z  is deterministic and ZN  is independent of 0Z ). A necessary 
condition for consistency is that the limit of the expected value of the cost 
function ( )V θ∗  (see Table 1) is minimal in 0θ  (Pintelon and Schoukens, 2001). 
It follows from (18) that this condition is satisfied if { ( , )}F ZE V Nθ  is a θ -

independent constant. Hence, for correct methods we have then 0 0( )Zθ θ=� . For 
cost functions of the form (13), we replace ( )Zη  by its limit value η∗  before 
taking the expected value of the cost function. The same analysis is then 
performed on ( ) { ( , , )}F FV E f Zθ θ η∗= . 

3. convergence to the noiseless solution: if model errors exist, for example, 
because of a wrong choice of the order of the numerator and/or denominator 
polynomials, or because a true linear lumped model simply does not exist, then 
ˆ( )Zθ  converges to 0 0( )Zθ θ≠� . Under some conditions, the value 0( )Zθ�  is 

independent of the noise level of the measurements. To verify this, we replace 
Cov( )ZN  by 2Cov( )ZNυ  in the cost function (18), with υ  a real number. If 

this transforms 0( , )FV Zθ  into 2
0( ) ( , )Ff V Zθυ  and if { ( , )}F ZE V Nθ  is a θ -

independent constant then 0( )Zθ�  and its limit value θ∗  are independent of the 
noise level υ . This is true for any υ , and hence also for υ→ 0  which defines, 
asymptotically, the noiseless solution. For cost functions of the form (13), the 
analysis is performed on ( ) { ( , , )}F FV E f Zθ θ η∗=  and the same conclusions 
hold if η∗ , the limit value of ( )Zη , is independent of υ . 
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4. dependence on the parameter constraint: from a numerical point of view it is 
also handy that the estimate of the plant transfer function ˆ( , ( ))kG ZθΩ  is 
independent of the particular parameter constraint chosen, for example, 1ia = , 

or 1jb = , or 2
2|| || 1θ =  … Indeed, if we fix a zero coefficient to one then the 

normal equations (15) become ill-conditioned. To avoid this problem, it is better 
to use the constraint 2

2|| || 1θ = . The estimated plant model ˆ( , ( ))G ZθΩ  is 
independent of the parameter constraint chosen if, for any 0λ ≠ , 

( , ) ( , )F FV Z V Zθ θλ = , with θ  the full over-parameterized form (Pintelon and 
Schoukens, 2001). 

 
5. numerical reliability of the normal equations: the Hessian of the expected value 

of the cost function has full rank in the true parameter values: 

0rank( ( )) dim( )FV θ θ′′ = =  number of free model parameters ( ′  is the derivative 
w.r.t. θ ). If the Hessian is not of full rank then the cost function cannot be 
approximated by a quadratic function in the neighborhood of the solution 0θ . 
This is problematic for most of the nonlinear minimization algorithms. 

 
- 
- 
- 
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