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Summary 
 
In this chapter the applicability of frequency-domain estimators in the field of modal 
analysis will be illustrated.  The basics of vibration and modal analysis are briefly 
summarized. In modal analysis, mechanical systems with a few inputs and hundreds of 
outputs have to be identified. This requires dedicated frequency-domain estimators 
designed to handle large amount of data in a reasonable amount of time.   
 
1. Introduction 
 
It is well known that (mechanical) structures can resonate, i.e. that small forces can 
result in significant deformation, and possibly, damage can be induced in the structure.  
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Figure 1: Tacoma Narrows Bridge Disaster. 
 
The Tacoma Narrows bridge disaster (Figure 1) is a typical example of this.  On 
November 7, 1940, the Tacoma Narrows suspension bridge collapsed due to wind-
induced vibration (i.e. flutter). Situated on the Tacoma Narrows in Puget Sound, near 
the city of Tacoma, Washington, the bridge had only been open for traffic a few months. 
 
Wings of airplanes can be subjected to similar flutter phenomena during flight. Before 
an airplane is released, flight flutter tests have to be performed to detect possible onset 
of flutter. The classical flight flutter testing approach is to expand the flight envelope of 
a airplane by performing a vibration test at constant flight conditions, curve-fit the data 
to estimate the resonance frequencies and damping ratios, and then to plot these 
frequencies and damping estimates against flight speed or Mach number. The damping 
values are then extrapolated in order to determine whether it is safe to proceed to the 
next flight test point. Flutter will occur when one of the damping values tends to 
become negative. Before starting the flight tests, ground vibration tests as well as 
numerical simulations and wind tunnel tests (see Figure 2) are used to get some prior 
insight into the problem.  
   

 
 

Figure 2: Wind tunnel tests on a scaled model of (a) a Cessna and (b) an Airbus A380. 
 
The majority of structures can be made to resonate, i.e. to vibrate with excessive 
oscillatory motion. Resonant vibration is mainly caused by an interaction between the 
inertial and elastic properties of the materials within a structure. Resonance is often the 
cause of, or at least a contributing factor to many of the vibration and noise related 
problems that occur in structures and operating machinery. To better understand any 
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structural vibration problem, the resonant frequencies of a structure need to be 
identified and quantified. Today, modal analysis has become a widespread means of 
finding the modes of vibration of a machine or structure (Figure 3). In every 
development of a new or improved mechanical product, structural dynamics testing on 
product prototypes is used to assess its real dynamic behavior. 
 
2. The “Modal” Model 
 
Modes are inherent properties of an elastic structure, and are determined by the material 
properties (mass, damping, and stiffness), and boundary conditions of the structure. 
Each mode is defined by a natural (modal or resonant) frequency, modal damping, and a 
mode shape (i.e. the so-called “modal parameters”). If either the material properties or 
the boundary conditions of a structure change, its modes will change. For instance, if 
mass is added to a structure, it will vibrate differently. To understand this, we will make 
use of the concept of single and multiple-degree-of-freedom systems.   
 

 
 

Figure 3: Modal analysis of a car body.  
 
2.1. Single Degree of Freedom 
 
A single-degree-of-freedom (SDOF) system (see Figure 4where the mass m can only 
move along the vertical x-axis) is described in the time domain by the following 
equation 
 

( ) ( ) ( ) ( )mx t cx t kx t f t+ + =  (1) 
 
with m the mass, c the damping coefficient, and k the stiffness. This equation states that 



UNESCO – 
EOLS

S

SAMPLE
 C

HAPTERS

CONTROL SYSTEMS, ROBOTICS AND AUTOMATION - Vol. V - Modal Analysis - Patrick Guillaume  

 

©Encyclopedia of Life Support Systems (EOLSS) 

the sum of all forces acting on the mass m should be equal to zero with ( )f t  an 
externally applied force, ( )mx t−  the inertial force, ( )cx t−  the (viscous) damping 
(internal) force, and ( )kx t−  the restoring force.  The variable ( )x t  stands for the 
position of the mass m with respect to its equilibrium point, i.e. the position of the mass 
when ( ) 0f t ≡ .  Transforming (1) to the Laplace domain (assuming zero initial 
conditions) yields 
 

( ) ( ) ( )Z s X s F s=  (2) 
 
with ( )Z s  the dynamic stiffness  
 

2( )Z s ms cs k= + + . (3) 
 
The transfer function ( )H s  between displacement and force, ( ) ( ) ( )X s H s F s= , equals 
the inverse of the dynamic stiffness 
 

2

1( )H s
ms cs k

=
+ +

. (4) 

 

 
 

Figure 4: SDOF system. 
 
The roots of the denominator of the transfer function, i.e. 2( )d s ms cs k= + + , are the 
poles of the system. In mechanical structures, the damping coefficient c is usually very 
small ( 1ζ ) resulting in a complex conjugate pole pair 
 

i dλ σ ω= − ±  (5) 
 
with  2d df ω π=  the damped natural frequency, 

 2n nf ω π=  the (undamped) natural frequency where n k mω λ= = , and 
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 2 nc mζ ω σ λ= =  the damping ratio ( 21d nf f ζ= − ). 
 
If 0c = , the system is not damped and the poles become purely imaginary, i nλ ω= ± . 
If, for instance, a mass mΔ  is added to the original mass m of the structure, its natural 
frequency decreases to ( )n k m mω′ = + Δ . 
 
The Frequency Response Function (FRF), denoted by ( )H ω , is obtained by replacing 
the Laplace variable s in (4) by iω  resulting in 
 

2 2
1 1( )

i ( ) i
H

m c k k m c
ω

ω ω ω ω
= =
− + + − +

 (6) 

 
Clearly, if 0c = , then ( )H ω  goes to infinity for n k mω ω→ =  (see Figure 4). 
 
Although very few practical structures could realistically be modeled by a single-
degree-of-freedom (SDOF) system, the properties of such a system are important 
because those of a more complex multiple-degree-of-freedom (MDOF) system can 
always be represented as the linear superposition of a number of SDOF characteristics 
(when the system is linear time-invariant). 
 
- 
- 
- 
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