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Summary 
 
An observer is a dynamic system Ŝ the purpose of which is to estimate the state of 
another dynamic system S using only the measured input and output of the latter. If the 
order of Ŝ is equal to the order of S the observer is said to be “full-order”; if the order 
of Ŝ is less than the order of S the observer is “reduced order.” (See Reduced Order 
State Observers) 
 
A full-order observer accomplishes its purpose by calculating the “residual,” which is 
the difference between the measured output and the corresponding quantity generated 
by a model of S synthesized in the observer. The residual, multiplied by a “gain” is 
used as an input to a model of S . If the gain is chosen appropriately, the observer 
Ŝ will be an asymptotically stable dynamic system and the estimation error will 
converge to zero.  
 
If the observer gain is optimized for the noise input to S and to the sensor(s), the 
observer is called a “Kalman filter.” If the gain is not so optimized, the observer may be 
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termed a “Luenberger observer”.  
 
The original theory of observers, as developed by Kalman and by Luenberger, was 
concerned only with linear dynamic systems. Many applications, however, required 
observers for nonlinear systems, and extensions to the linear theory have been 
developed during the years following the appearance of the original theory.  
 
1. Introduction 
 
There are many situations in the modern technology in which it is necessary to estimate 
the state of a dynamic system using only the measured input and output data of the 
system. If the system is observable (See Description and Analysis of Dynamic Systems 
in State Space) it is possible to achieve this goal, i.e., to determine the state ( )tx of a 
dynamic system by suitably processing the input ( )u τ and output y( )τ of the system 
for [ , ]t Tτ ∈ where T t> is sufficiently large. The procedure for determining ( )tx is 
not unique. 
 
One method of achieving the desired result is the use of an observer. An observer for a 
dynamic system ( )x,y,uS with state x , output y , and input u is another dynamic 

system ˆ ˆ( , , )x y uS having the property that the state x̂ of the observer Ŝ converges to 
the state x of the process S , independent of the input u or the state x . The initial state 

0 0( )t =x x of the process S is assumed to be unknown, hence the initial state 0x̂ of the 
observer is an estimate of 0x . 
 
Among the various applications for observers, perhaps the most important is for the 
implementation of closed-loop control algorithms designed by state space methods. The 
control algorithm is designed in two parts: a “full-state feedback” part based on the 
assumption that all the state variables can be measured; and an observer to estimate the 
state of the process based upon the observed output. The concept of separating the 
feedback control design into these two parts is known as the separation principle which 
has rigorous validity in linear systems and in a limited class of nonlinear systems. Even 
when its validity cannot be rigorously established, the separation principle is often a 
practical solution to many design problems.  
 
The concept of an observer for a dynamic process was introduced in 1966 by D. 
Luenberger. The generic “Luenberger observer,” however, appeared several years after 
the Kalman filter, which is in fact an important special case of a Luenberger observer—
an observer optimized for the noise present in the observations and in the input to the 
process. 
 
2. Linear Observers  
 
2.1. Continuous-Time Systems 
 
Consider a linear, continuous- time dynamic system  
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0 0, ( )t =x = Ax + Bu x x        (1) 
 
y = Cx .          (2) 
 
The more generic output  
 
y = Cx + Du  
 
can be treated by defining a modified output 
 

−y = y Du  
 
and working with y instead of y . (The direct coupling Du from the input to the output 
is absent in many physical plants.). 
 
A full-order observer for the linear process defined by (1) and (2) has the generic form  
 

ˆˆ ˆx = Ax + Ky + Hu ,        (3) 
 
where the dimension of state x̂ of the observer is equal to the dimension of process state 
x . 
 
The matrices ˆ ,A K , and H appearing in (3) must be chosen to conform with the 
required property of an observer: that the observer state must converge to the process 
state independent of the state x and the input u . To determine these matrices, let 
 

ˆ:= −e x x           (4) 
 
be the estimation error. From (1), (2), and (3) 
 

ˆ− − − −e = Ax + Bu A(x e) KCx Hu  
ˆ ˆ= − − −Ae + ( A + A KC)x + (B H)u .     (5) 

 
From (5) it is seen that for the error to converge to zero independent of x and u , the 
following conditions must be satisfied:  
 
ˆ = −A A KC   (6) 

 
H = B .          (7) 
 
When these conditions are satisfied, the estimation error is governed by  
 

ˆe = Ae ,          (8) 
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which converges to zero if Â is a “stability matrix”, i.e., that (8) is an asymptotically 
stable dynamic system. When Â is constant, this means that its eigenvalues must lie in 
the (open) left half plane. 
 
Note that the initial state of (8) is  

0 0 0ˆ= −e x x  
 
hence, if the initial state of the process under observation is known precisely (i.e., 

0 0ˆx = x ) then the estimation error is zero thereafter. Due to the possibility of the 
occurrence of disturbances (not necessarily the “white noise” assumed in the Kalman 
filter), however, the true state x may depart from the solution to (1) during the course of 
operation of the observer. Hence knowledge of the initial state 0( )tx does not eliminate 
the need for an observer in practical situations. 
 
Since the matrices , ,A B and Care defined by the plant, the only freedom in the design 
of the observer is in the selection of the gain matrix K . 
 
To emphasize the role of the observer gain matrix, and accounting for requirements of 
(6) and (7), the observer can be written as 
 
ˆ ˆ ˆ−x = Ax + Bu + K(y Cx) .       (9) 

 

 
 

Figure 1: Full-order observer for linear process. 
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A block-diagram representation of (9), as given in Figure 1, aids in the interpretation of 
the observer. Note that the observer comprises a model of the process with an added 
input: 

ˆ( −K y Cx) = Kr . 
 
The quantity  

ˆ ˆ: − −r = y Cx = y y          (10) 
 
often called the residual, is the difference between the actual observation y and the 
“synthesized” observation  
 
ˆ ˆy = Cx  

 
produced by the observer. The observer can be viewed as a feedback system designed to 
drive the residual to zero: as the residual is driven to zero, the input to (9) due to the 
residual vanishes and the state of (9) looks like the state of the original process.  
 
The fundamental problem in the design of an observer is the determination of the 
observer gain matrix K such that the closed-loop observer matrix 
 
ˆ −A = A KC          (11) 

 
is a stability matrix, as defined above.  
 
There is considerable flexibility in the selection of the observer gain matrix. Two 
methods are standard: optimization, and pole-placement.  
 
2.1.1 Optimization 
 
Since the observer given by (9) has the structure of a Kalman filter, (see Kalman 
Filters.) its gain matrix can be chosen as a Kalman filter gain matrix, i.e.,  
 

1−′K = PC R ,         (12) 
 
where P is the covariance matrix of the estimation error and satisfies the matrix Riccati 
equation 
 

1−′ ′= + − +P AP PA PC R CP Q ,      (13) 
 
where R is a positive-definite matrix and Q is a positive, semi-definite matrix. The 
matrices R and Q  are, respectively, the spectral density matrices of the white noise 
processes driving the observation (the “observation noise”) and the system dynamics 
(the “process noise”). 
 
The initial condition on (13) 
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0 0( )t=P P  
 
is the initial state covariance matrix is chosen to reflect the uncertainty of the state at the 
starting time 0t . 
 
In many applications the steady-state covariance matrix is used in (12). This matrix is 
given by setting P in (13) to zero. The resulting equation is known as the algebraic 
Riccati equation—ARE. Algorithms to solve the ARE are included in popular control 
system software packages such as Matlab.  
 
In order for the gain matrix given by (12) and (13) to be genuinely optimum, the process 
noise and the observation noise must be white with the matrices Q and R being their 
spectral densities. It is rarely possible to determine these spectral density matrices in 
practical application. Hence, the matrices Q and R can be treated as design parameters 
which can be varied to achieve overall system design objectives.  
 
If the observer is to be used as a state estimator in a closed-loop control system, an 
appropriate form for the matrix Q is  
 

2q ′=Q BB .          (14) 
 
As has been shown by Doyle and Stein, as q →∞ , this observer tends to “recover” the 
stability margins assured by a full-state feedback control law obtained by quadratic 
optimization. 
 
2.1.2. Pole-Placement 
 
An alternative to solving the algebraic Riccati equation to obtain the observer gain 
matrix is to select K to place the poles of the observer, i.e., the eigenvalues of Â  in 
(11). (See Pole Placement Control.) 
 
When there is a single observation, K is a column vector with exactly as many elements 
as eigenvalues of Â . Hence specification of the eigenvalues of Â uniquely determines 
the gain matrix K . A number of algorithms can be used to determine the gain matrix, 
some of which are incorporated into the popular control system design software 
packages. Some of the algorithms have been found to be numerically ill-conditioned, so 
caution should be exercised in using the results.  
 
The author of this chapter has found the Bass-Gura formula effective in most 
applications. This formula gives the gain matrix as  
 

1 ˆ( ) ( )−′= −K OW a a ,        (15) 
 
where 
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1 2[ ... ]na a a ′=a         (16) 
is the vector formed from the coefficients of the characteristic polynomial of the process 
matrix A : 
 

1
1 1| | ...n n

n ns s a s a s a−
−− = + + + +I A      (17) 

 
and â is the vector formed from the coefficients of the desired characteristic polynomial  
 

1
1 1

ˆ ˆ ˆ ˆ| | ...n n
n ns s a s a s a−
−− = + + + +I A .     (18) 

 
The other matrices in (15) are given by  
 

1[ ... ]n−′ ′ ′ ′ ′=O C A C A C ,       (19) 
 
which is the observability matrix of the process, and  
 

1

1

1
0 1

0 0 1

n

n

a a
a −

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

W .        (20) 

 
The determinant of W is 1, so it is not singular. If the observability matrix O is not 
singular, the inverse matrix required in (15) exists. Hence the gain matrix K can be 
found which places the observer poles at arbitrary locations if (and only if ) the process 
for which an observer is sought is observable.  
 
Ackermann’s algorithm (cited by Kailath and incorporated in the Matlab suite) is an 
alternative to the Bass-Gura algorithm.  
 
Numerical problems occur with both the Bass-Gura algorithm and the Ackermann 
algorithm, when the observability matrix is nearly singular. Other numerical problems 
can arise in determination of the characteristic polynomial | |s −I A for high order 

systems and in the determination of ˆs −I A when the individual poles, and not the 
characteristic polynomial, are specified. In such instances, it may be necessary to use an 
algorithm designed to handle difficult numerical calculations, such as the algorithm of 
Kautsky and Nichols, which is included in the Matlab suite.  
 
When two or more quantities are observed, there are more elements in the gain matrix 
than eigenvalues of Â , so specification of the eigenvalues of Â does not uniquely 
specify the gain matrix K . In addition to placing the eigenvalues, more of the 
“eigenstructure” of Â can be specified. This method of selecting the gain matrix is 
fraught with difficulty, however, and the use of the algebraic Riccati equation is usually 
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preferable. The Kautsky-Nichols algorithm can also deal with more than a single 
observation input. It uses the additional degrees of freedom afforded by the multiple 
input to achieve enhanced robustness in the observer.  
 
- 
- 
- 
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