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Summary 
 
The Kalman filter provides a means for estimating the parameters and states from 
indirect (and noisy) measurements in order to control complex, dynamic systems, and to 
predict the outcome of dynamic systems that people are not likely to control. Optimal 
Kalman filters are developed by assuming that plant and measurement noises are white 
noise processes, or sequences. The Kalman filter can be characterized as an algorithm 
for computing the conditional mean and covariance of the probability distribution of the 
state of a linear stochastic system with uncorrelated Gaussian process and measurement 
noise. 
 
This article derives equations for the discrete-time estimator and the continuous-time 
optimal estimator (Kalman-Bucy filter) and its implementation. Kalman filters are 
developed for nonlinear discrete and continuous systems as well, including model 
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extensions, and approximation methods used for applying the methodology of Kalman 
filtering to “slightly nonlinear” problems.  
 
The theoretical performance of Kalman filters has been shown to be characterized by 
the covariance matrix of estimation uncertainty that is computed as the solution of a 
matrix Riccati differential and difference equation. Current work on the Kalman filter 
primarily focuses on development of robust and numerically stable implementation 
methods. The article discusses the modified Cholesky (UD) decomposition algorithms 
implementation and other UD filtering modifications, including use of the Gram-
Schmidt orthogonalizations. References are given to explore additional alternative 
Kalman filter implementations.  
 
The Kalman filter is an observer, a parameter identifier in modeling, a predictor, a filter 
and a smoother in a variety of applications. It is an integral part of almost every onboard 
trajectory estimation and control system. Kalman filters are used in bioengineering, 
traffic systems, photogrammetry, global positioning systems, inertial navigation, 
guidance, and myriad process controls. The Kalman filter has become integral to 21st 
century technology. 
 
1. Introduction 
 
What is a Kalman filter? Theoretically, a Kalman filter is an estimator for what is called 
the linear-quadratic-Gaussian problem (LQG), which is the problem of estimating the 
instantaneous “state” of a linear dynamic system perturbed by Gaussian white noise, by 
using measurements linearly related to the state, but corrupted by Gaussian white noise. 
For any quadratic function of estimation error, an estimator can be designed to minimize 
it. R. E. Kalman introduced the “filter” in a 1960 paper, “A new approach to linear 
filtering and prediction problems.” 
 
Practically, the Kalman filter is certainly one of the greater discoveries in the history of 
statistical estimation theory and possibly the greatest discovery in the twentieth century. 
It has enabled humankind to do many things that could not have been done without it, 
and it has become as indispensable as silicon in the makeup of many electronic systems. 
Its most immediate applications have been for the control of complex dynamic systems 
such as continuous manufacturing processes, aircraft, ships, or spacecraft. 
 
In order to control a dynamic system, it is necessary to first know what the system is 
doing. For these applications, it is not always possible or desirable to measure every 
variable that needs to be controlled. The Kalman filter provides a means for inferring 
the missing information from indirect (and noisy) measurements. In such situations, the 
Kalman filter is used to estimate the complete state vector from partial state 
measurements and is called an “observer”. The Kalman filter is also used for predicting 
the outcome of dynamic systems that people are not likely to control, such as the flow 
of rivers during flood conditions, the trajectories of celestial bodies, or the prices of 
traded commodities.  
 
From a practical standpoint, this article will present the following perspectives: 
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1. Kalman filtering is an algorithm made from mathematical models. The 
Kalman filter makes it easier to solve a problem, but it does not solve the 
problem all by itself. As with any algorithm, it is important to understand 
its use and function before you can apply it effectively. The purpose of this 
article is to make the use of the Kalman filter sufficiently familiar so that it 
can be correctly and efficiently applied. 

2. The Kalman filter is a recursive algorithm. It is ideally suited to digital 
computer implementation, in part because it uses a finite representation of 
the estimation problem—by a finite number of variables. It does, however, 
assume that these variables are real numbers with infinite precision. Some 
of the problems encountered in its use arise from the distinction between 
the finite dimension and the finite information, and the distinction between 
finite and manageable problem sizes. These are all issues on the practical 
side of Kalman filtering that must be considered along with the theory. 

3. It is a complete statistical characterization of an estimation problem. It is 
much more than an estimator, because it propagates the entire probability 
distribution of the variables that it is tasked to estimate. This is a complete 
characterization of the current state of knowledge of the dynamic system, 
including the influence of all past measurements. These probability 
distributions are also useful for statistical analysis and predictive design of 
sensor systems. 

4. In a limited context, the Kalman filter is a learning process. It uses a model 
of the estimation problem which distinguishes between phenomena (what 
one is able to observe), noumena (what is really going on), and the state of 
knowledge about the noumena that one can deduce from the phenomena. 
This state of knowledge is represented by probability distributions. To the 
extent that those probability distributions represent knowledge of the real 
world, and the cumulative processing of knowledge is learning; this is a 
learning process. It is a fairly simple one, but quite effective in many 
applications. 

 

 
 

Figure 1: Foundational concepts in Kalman filtering 
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Figure 1 depicts the essential subjects forming the foundations for the Kalman filtering 
theory. Although this shows Kalman filtering as the apex of a pyramid, it is just a part 
of the foundations of another discipline—modern control theory—and a proper subset 
of statistical decision theory. 
 
Applications of Kalman filtering encompass many fields. As a tool, the algorithm is 
used almost exclusively for estimation and performance analysis of estimators and as 
observers for control of a dynamical system. Except for a few fundamental physical 
constants, there is hardly anything in the universe that is truly constant. The orbital 
parameters of the asteroid Ceres are not constant, and even the “fixed” stars and 
continents are moving. Nearly all physical systems are dynamic to some degree. If one 
wants very precise estimates of their characteristics over time, then one has to consider 
their dynamics. 
 

APPLICATION DYNAMIC SYSTEM SENSOR TYPES 
Process control Chemical plant Pressure  

Temperature 
Flow rate 
Gas analyzer 

Flood prediction River system Water level 
Rain gauge 
Weather radar 

Tracking Spacecraft Radar 
Imaging system 

Navigation Ships 
Aircrafts, missiles 
Smart bombs 
Automobiles 
Golf carts 

Sextant 
Log 
Gyroscope 
Accelerometer 
GPS receiver 

 
Table 1: Examples of estimation problems 

 

One does not always know the precise dynamics. Given this state of partial ignorance, 
the best that one can do is to express our ignorance more precisely—using probabilities. 
The Kalman filter allows us to estimate the state of such systems with certain types of 
random behavior by using statistical information. A few examples of such systems are 
listed in Table 1. 
 
The third column of Table 1 lists some sensor types that one might use to estimate the 
state of the corresponding dynamic systems. The objective of design analysis is to 
determine how best to use these sensor types for a given set of design criteria. These 
criteria are typically related to estimation accuracy and system cost. 
 
Because the Kalman filter uses a complete description of the probability distribution of 
its estimation errors in determining the optimal filtering gains, this probability 
distribution may be used in assessing its performance as a function of the “design 
parameters” of an estimation system, such as: 
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• The types of sensors to be used. 
• The locations and orientations of the various sensor types with respect to the system 

to be estimated. 
• The allowable noise characteristics of the sensors. 
• The pre-filtering methods for smoothing sensor noise. 
• The data sampling rates for the various sensor types. 
• The level of model simplification to reduce implementation requirements. 
 
This analytical capability of the Kalman filter enables system designers to assign “error 
budgets” to subsystems of an estimation system, and to trade off the budget allocations 
to optimize costs or other measures of performance while achieving a required level of 
estimation accuracy. Further, it acts like an observer by which all of the states not 
measured by the sensors can be constructed for use in the control system applications. 
In the following sections, we will be developing the following Kalman filters: 
 
• Linear Kalman filters for discrete and continuous systems. 
• Linearized and extended Kalman filters for discrete and continuous nonlinear 

systems. 
• Implementation methods to overcome the shortcomings of the above two methods. 

 
2. White Noise 
 
Optimal Kalman filters are developed by assuming that the plant and measurement 
noises are white noise processes, or sequences. It is a common engineering practice to 
model: uncertainty in terms of Gaussian probability distributions and dynamic 
uncertainty in terms of linear dynamic systems disturbed by uncorrelated (white noise) 
processes—even though empirical analysis may indicate that the probability 
distributions are not truly Gaussian, and that the random processes are not truly white, 
or the relationships are not truly linear. Although this approach may be discarding 
useful information, we continue the practice for the following reasons: 
 
1. Approximation: Probability distributions may not be precisely Gaussian, but close 

enough. Nonlinear systems are often smooth enough that local linearization is 
adequate. Even though the “flicker” noise observed in electronic systems cannot be 
modeled precisely using only white noise, it can often be done closely enough for 
practical purposes. 

2. Simplicity: These models have few parameters to be estimated. Gaussian 
distributions are characterized by their means and variances, and white noise 
processses are characterized by their variances. 

3. Consistency: Linearity preserves Gaussianity. That is, Gaussian probability 
distributions remain Gaussian under linear transformations of the variates. 

4. Tractability: These models allow us to derive estimators minimizing expected 
squared errors. 

5. Good performance: The resulting estimators have performed well for many 
important applications, despite apparent discrepancies between models and reality. 

6. Adaptability: These estimators can often be extended to estimate parameters of the 
model or to track slow random variations in parameters. 
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7. Extendability: The variances used for calculating feedback gains can also be used 
for comparing performance to modeled performance, detecting anomalous behavior, 
and rejecting anomalous sensor data. 

 
Vector valued random processes x(t) and y(t) are called uncorrelated, if their cross-
covariance matrix is identically zero for all times, t1 and t2. 
 

( ) ( ){ } ( ) ( ){ }{ }1 1 2 2E E E 0
T

x t x t y t y t⎡ ⎤ ⎡ ⎤− − =⎣ ⎦ ⎣ ⎦  (1) 

 
where E is the expected value operator and T is the transpose of the vector. 
The random process x(t) is called uncorrelated if 
 

( ) ( ){ } ( ) ( ){ }{ } ( ) ( )1 1 2 2 1 1 1 2E E E
T

x t x t x t x t Q t t tδ⎡ ⎤ ⎡ ⎤− − = −⎣ ⎦ ⎣ ⎦  (2) 

 
where δ(t) is the Dirac delta “function” (actually, a generalized function), defined by 
 

( )
1 if 0
0 otherwise

b

a

a b
t dtδ

≤ ≤⎧
= ⎨
⎩

∫  . (3) 

 
Similarly, a random sequence xk in discrete time is called uncorrelated if 
 

{ } ( ) ( )2E E E
T

k k j jx x x x Q k k j⎡ ⎤− − = Δ −⎡ ⎤⎣ ⎦ ⎣ ⎦  (4) 

 
where Δ(⋅) is the Kronecker delta function, defined by 
 

( )
1 if 0
0 otherwise

k
k

=⎧
Δ = ⎨

⎩
 . (5) 

 
Q1(t) and Q2(k) are the intensity matrices of the white noise process and sequence, 
respectively. If Q1(t) and Q2(t) are constant, then the processes and sequences are 
stationary. If the probability distribution of a white noise process at each instant of time 
is Gaussian, then it is completely defined by its first two moments, mean and 
covariance. If E x(t) = 0, the Gaussian process is called “zero mean.” 
 
A white noise process or sequence is an example of an uncorrelated process or 
sequence. Generally, a white noise process has no time structure. In other words, 
knowledge of the white process value at one instant of time provides no knowledge of 
what its value will be (or was) at any other point in time. 
 
3. Linear Estimation  
 
Linear estimation addresses the problem of estimating the state of a linear stochastic 
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system by using measurements or sensor outputs that are linear functions of the state. 
We suppose that the stochastic systems can be represented by the types of plant and 
measurement models (for continuous and discrete time) shown as equations in Table 2, 
with dimensions of the vector and matrix quantities. The measurement and plant noise 
vk and wk, respectively, are assumed to be zero-mean Gaussian processes, and the initial 
value x0 is a Gaussian random variable with known mean x0 and known covariance 
matrix P0. Although the noise sequences wk and vk are assumed to be uncorrelated, this 
restriction can be removed by modifying the estimator equations accordingly. 
 
MODEL CONTINUOUS TIME DISCRETE TIME 
Plant ( ) ( ) ( ) ( )x t F t x t w t= +  -1 -1 -1k k k kx x w= Φ +  

     measurement ( ) ( ) ( ) ( )z t H t x t v t= +  k k k kz H x v= +  

Plant noise ( )E = 0w t  

( ) ( ) ( ) ( )E Tw t w s t s Q tδ= −  

E = 0kw  

( )E T
k i kw w k i Q= Δ −  

Observation ( )E 0v t =  E 0kv =  

     noise ( ) ( ) ( ) ( )E -Tv t v s t s R tδ=  ( )E -T
k i kv v k i R= Δ  

 
(LINEAR MODEL) SYMBOL DIMENSIONS SYMBOL DIMENSIONS

,x w  1n×  ,Φ Q  n n×  
,z v  1l×  H l n×  

Dimensions 
     of vectors and 
     matrices 

R l l×  ,δΔ  SCALAR 
 

Table 2: Linear plant and measurement models 
 
The objective of statistical optimization is to find an estimate of the n state vector 
xk represented by ˆkx , a linear function of the measurements zi,…, zk, that minimizes the 
weighted mean-squared error 
 

ˆ ˆE T
k k k kx x M x x− −⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦  , (6) 

 
where M is any symmetric non-negative definite weighting matrix. 
 
We will now derive the mathematical form of an optimal linear estimator for the states 
of linear stochastic systems given in Table 2. This is called the linear quadratic 
Gaussian (LQG) estimation problem. The dynamic systems are linear, the performance 
cost functions are quadratic, and the random processes are Gaussian. 
Let us consider similar types of estimators for the LQG problem: 
 
• Filters use observations up to the time that the state of the dynamic system is to be 

estimated: 
 
            obs. est.t t≤  (7) 
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• Predictors estimate the state of the dynamic system beyond the time of the 
observations: 

 
            obs. est.t t<  (8) 
 
This is a relatively minor distinction, and the differences between the respective 
estimators are correspondingly slight. 
 
A straightforward and simple approach using orthogonality principles is used in the 
derivation of estimators. These estimators will have minimum variance and be unbiased 
and consistent. 
 
The Kalman filter can be characterized as an algorithm for computing the conditional 
mean and covariance of the probability distribution of the state of a linear stochastic 
system with uncorrelated Gaussian process and measurement noise. The conditional 
mean is the unique unbiased estimate. It is propagated in feedback form by a system of 
linear differential equations, or by the corresponding discrete-time equations. The 
conditional covariance is propagated by a nonlinear differential equation, or its discrete-
time equivalent. This implementation automatically minimizes any quadratic loss 
function of the estimation error. 
 
The statistical performance of the estimator can be predicted a priori (that is, before it is 
actually used) by solving the nonlinear differential (or difference) equations used in 
computing the optimal feedback gains of the estimator. These are called “Riccati 
equations,” named in 1763 by Jean le Rond D’Alembert (1717-1783) for Count Jacopo 
Francesco Riccati (1676-1754), who had studied a second-order scalar differential 
equation, although not the form that we have here. Kalman gives credit to Richard S. 
Bucy for the discovery that the Riccati differential equation serves the same role as the 
Wiener-Hopf integral equation in defining optimal gains. The Riccati equation also 
arises naturally in the problem of separation of variables in ordinary differential 
equations, and in the transformation of two-point boundary value problems to initial 
value problems. The behavior of their solutions can be shown analytically in trivial 
cases. These equations also provide a means for verifying the proper performance of the 
actual estimator when it is running. 
 
- 
- 
- 
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