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Summary 
 
Pole placement by output feedback is separated into pole placement by state feedback 
and observer pole placement. Since both problems are dual, only the state feedback case 
is worked out in detail. In the single-input case, the pole placement problem has a 
unique solution. It is found efficiently by Ackermann’s formula. A numerically stable 
evaluation via Hessenberg form is shown. 
 
In the multi-input case, the solution to the pole placement problem is non-unique. 
Therefore other specifications in addition to pole placement can be satisfied. Such 
choices are limited only by feedback invariants. These invariants are exhibited in a 
Brunovski canonical form, which is fully characterized by a set of integers, the 
controllability indices (also called Kronecker indices). A feedback transformation to this 
form also provides a deadbeat solution with the smallest number of sampling intervals 
until each state variable comes to complete rest. Going backwards in the same steps, 
new life, i.e., new dynamics of subsystems and new couplings between subsystems can 
be given to the deadbeat structure. Finally, the total feedback matrix is composed as a 
sum of a deadbeat feedback matrix and a revival feedback matrix. The overall 
calculations may be done in a numerically stable way by transformation to HN form. 
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1. Introduction 
 
Consider a system with linear state-space model 
 
= +
=

�x A x B u
y C x

 (1) 

 
The dimensions of the vectors are: 
input vector  dim u = m 

state vector  dim x = n 

output vector dim y = p 
 
A, B and C are real matrices of appropriate dimensions. 
 
Application of the Laplace transform to Eq. (1) yields the input-output description 
 

(s) ( s ) ( )= − -1y C I A B u s  (2) 
 
It has the form of a p × m matrix of rational transfer functions. The uncancelled 
denominator 
 

( ) det ( )a s s= −I A  (3) 
 
is the (open-loop) characteristic polynomial. Its roots are the eigenvalues of A, they 
characterize the dynamics of the system (1).  
 
If a factor (s – sk) in a(s) is cancelled by the numerator of the transfer function from 
input j to output i (i.e., in the ij-element of the transfer matrix), then the eigenvalue s1 is 
either not controllable from input j or not observable from output i (or both). Therefore 
the eigenvalue sk cannot be shifted feedback from output i to input j. After execution of 
all cancellations the poles remain in the denominator, which can be shifted to an 
assigned position. Synonymous expressions for this process are “pole placement”, “pole 
assignment” and “pole shifting”. 
 
For simplicity we assume, that the pair (A, B) is controllable, i.e., each eigenvalue is 
controllable form at least one input. Correspondingly it is assumed, that the pair (A, C) 
is observable, i.e., each eigenvalue is observable from at least one output. 
 
A typical control problem arises, when the location of poles indicates an unstable or 
weakly damped or very slow response of the system. A better dynamic behavior can be 
achieved by feedback of y to u by a controller. Pole placement control is a systematic 
way to determine this controller such that the closed-loop system has a desired set of 
poles. 
 

2. Separation of state observation and state feedback 
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A pole placement controller consists of an observer that generates an estimate x̂  for the 
state x  and a state feedback of x̂  to u . If all states are measured, i.e., rank C = n, then 
no observer is needed and x  is fed back to u . Assume in this section rank C = p < n. 
An observer of order n  may be written as 
 
ˆ ˆ ˆ= + + −�x A x B u L(y C x)  (4) 

 
Its state x̂  is fed back via 
 

ˆ= −u V r K x  (5) 
 
where r  is the reference input, K . L  and V  are the free parameters in this controller 
structure. Introducing the estimation error ˆx x x= −� , the state equation of the overall 
system described by Eqs. (1), (4) and (5) becomes 
 

−⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= +⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

�
�� �
x A B K B K x B

V r
x 0 A LC x 0

 (6) 

 
The block triangular structure of the system matrix shows that the characteristic 
polynomial of the closed-loop system is the product of ( ) det ( )p s s= − +I A B K  
and ( ) det ( )q s s= − +I A LC . This separation property allows the independent 
placement of the control poles in ( )p s  by K  and of the observer poles in ( )q s  by L . 
The conclusion on separation also holds, if the full order observer is replaced by an 
observer of the reduced order n p− . An elegant result in linear control theory is that 
poles of a controllable and observable system can be assigned arbitrarily by linear state 
feedback. 
 
The two pole placements are dual and can be made identical by transposing the second 
matrix as ( ) det ( )T T Tq s s= − +I A C L . The correspondences are for the given 

matrices ,T T→ →A A B C  and the polynomial equation is to be solved for 
T→K L . Therefore observer pole placement will not be discussed further in the 

following sections and only the equation ( ) det ( )p s s= − +I A B K  will be treated 
as it applies also to full state feedback = −u V r K x .  
 

3. The single-input case 
 
In the single-input case, 1m = , the feedback vector Tk  has n  elements and there are 
n  assigned poles for the closed-loop. The resulting set of n  equations in n  unknowns 
has a unique solution if and only if the pair ( )A,b  is controllable, i.e., 
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det[ ] 0≠… n-1b, Ab A b . Consider the equation ( ) det ( )Tp s s= − +I A bk  
with a given controllable pair (A, b). In analyzing the effect of a given state feedback 
vector k  on the roots of ( )p s  one has to go through the numerical factorization of the 
polynomial ( )p s . A symbolic solution is not possible except for a few very simple 
cases. In the opposite direction, i.e., given the roots of ( )p s , find the required k , a 
symbolic solution of the synthesis problem is possible. It will be presented in the next 
section. 
 

a. Ackermann’s formula 
 
The solution of 
 

1
0 1 1

( ) det ( )

,
( , ) controllable

T

n n
n

p s s

p p s p s s−
−

= − + =

+ + + +…

I A bk

A b
 (7) 

 
for Tk  will be derived in this section. Let T= −F A bk , expand kF  into 

expressions of the form kA  and , 1i T j i j k+ = −A bk F , and evaluate  
 

0 1
0 1

1
1

( )

.n n
n

p p p

p −
−

= + +

+ +

…F F F

F F
 

 
0 0

1 1

2 2

1

2 1

( )

T

T T

n n n- T

n- T T n-

= =

= −

= − −

= − −

− −

#

…

F A I

F A bk

F A Abk bk F

F A A bk

A bk F bk F

 

0

1

2

1

p
p
p

×

×
×

×
#

 

 

1( ) ( n
Tp p ) − ⎡ ⎤

⎡ ⎤= − ⎢ ⎥⎣ ⎦
⎣ ⎦

#
…F A b, Ab, A b

k
 (8) 

 
The polynomial ( ) det ( )p s s= −I F  is the characteristic polynomial that shall be 
given to F ,  
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therefore, by the CAYLEY-HAMILTON theorem, ( )p = 0F  and 

1 1, , ( )n-
T p−⎡ ⎤

⎡ ⎤=⎢ ⎥ ⎣ ⎦
⎣ ⎦

#
…b Ab A b A

k
. From the last row of this equation follows 

 
( )T T p=k e A  (9) 

 

where [ ]
110 0 1T n −−⎡ ⎤= ⎣ ⎦… …e b, Ab, A b  

 
is the last row of the inverted controllability matrix (non singular by the assumption of 
controllability). Eq. (9) is known as Ackermann’s formula. Note that ( )p s  may be 
given in factorized form as  
 

/ 2
2

1

( 1) / 2
2

1

( )

for even

( ) ( )

for odd

n

i ii

n

i ii

s b s c

n
p(s)

s d s b s c

n

=

−

=

⎧
Π + +⎪

⎪
⎪

= ⎨
⎪ + Π + +⎪
⎪
⎩

 (10) 

 
rather than the multiplied form Eq. (7). The closed-loop system is then stable if and only 
if all ,i ib c  and d  are positive. This is a characterization of all stabilizing state 
feedback gains k  in Eq. (9). 
 
The factorized form is useful if the design is performed in consecutive steps, where in 
each step only two eigenvalues are shifted. Assume the open-loop characteristic 
polynomial Eq. (3) is factorized as 
 

2
inv 0 1( ) ( )a(s) a s a a s s= ⋅ + +  (11) 

 
where inv ( )a s  is a polynomial of degree 2n − , whose roots shall remain unchanged 
in a design step. Then the closed-loop characteristic polynomial is specified as  
 

2
inv 0 1( ) ( )p(s) a s b b s s= + +  (12) 

 
and Eq. (9) reads 
 

2
0 1

T T
inv (b b )= + +k e I A A  (13) 
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where ( )T T
inv inva=e e A . Since 2

inv 0 1( )T T a a= + +0 e I A A , Eq. (13) may be 
written as 
 

[ ]0 0 1 1( )T T
inv (b a ) b a= + −k e - I A  (14) 

 
The two vectors T

inve  and T
inve A  span a linear subspace of the K -space, in which 

the 2n −  open-loop poles contained in inv ( )a s , are not observable and cannot be 
shifted. 
 
The factorized form of Eq. (9) is also useful to determine the sensitivity of the state-
feedback vector Tk  with respect to the placement of one or two eigenvalues. 
 
For a real eigenvalue at 1s s=  
 

1( ) ( )T T s r= −k e A I A  
 
where ( )r s  contains the remaining 1n −  eigenvalues. Then 
 

1
( )

T
T r

s
∂

= −
∂
k e A  (15) 

 
For a pair of eigenvalues at the roots of 2

0 1b b s s+ +  
 

0 1

0 1

( ) ( )

( ), ( )

T T

T T
T T

b b r

r r
b b

= + +

∂ ∂
= =

∂ ∂

2k e I A A A

k ke A e A A

 (16) 

 
b. Numerically stable calculation via Hessenberg form 

 
Eq. (9) may be written as  
 

[ ]

0 1

1

0 1 1

(

)
1

T T

n

n

p p

p
p p p

−

−

= + +

+ +

=

…

…

n-1n-1

k e I A

A A
E

 (17) 

 
The matrix 
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T

T

T

⎡ ⎤
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

#
n

e

e AE

e A

 

 
is called pole placement matrix. The form Eq. (17) illustrates that it is not necessary to 
evaluate ( )p A  by calculations with 2n -matrices. The calculation of E  only requires 
operations on n -vectors. 
 
A numerically stable way of computing Te , the last row of the inverted controllability 
matrix, is via transformation of the pair ( )A, b  to Hessenberg form with 
 

[ ]

1 ,

0 | 0
|
|
| 0
|

H H H H

H

x
x x

x x

−= =

⊗⎡ ⎤
⎢ ⎥⊗⎢ ⎥
⎢ ⎥=
⎢ ⎥⊗⎢ ⎥
⎢ ⎥⊗⎣ ⎦

…
#

# # % #
#
… … …

H

H

A T A T b T b

A b

 (18) 

 
The x  entries denote arbitrary elements and the ⊗ are nonzero for a controllable 
system. This transformation uses only numerically stable elementary permutation and 
elimination steps for the computation of 1, , andH H H

−
HA b T T . In Hessenberg form 

the last row of the inverted controllability matrix is 
 

[ ]1 0 0T
H He= …e  (19) 

 
where 11/ He  the product of the ⊗-elements in equation (18).Then H=T T

T He e T . 
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