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Summary 
 
The problem in which a linear plant is to be controlled such as to minimize a quadratic 
cost is addressed. Although this problem finds applications per se, e. g. in technology or 
Economic Planning, its main interest stems from being a basic block for the solution of 
other problems of major importance. A landmark example is provided by the LQG 
problem. The basic theory of the LQ regulator, in both continuous and discrete time, 
when the state of the plant to be controlled is available for direct measurement, is 
considered. The approach followed relies on the application of either Pontryagin’s 
Maximum Principle or Bellman’s Dynamic Programming. In continuous time the plant 
to control is assumed to be described by a linear controllable state space model. The 
resulting controller for the regulation problem consists of a state feedback whose gain 
K  depends on the solution P  of a non-linear matrix differential equation, called Riccati 
equation. For finite optimization intervals, P , and therefore the vector of feedback 
gains K , are time dependent. When the optimization horizon grows unbound, however, 
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the solution of the Riccati differential equation tends to a constant. The solution to the 
steady state LQ problem is thus given by a constant gain feedback control law, whose 
vector of gains depends on plant parameters, and a constant matrix P . This constant 
matrix satisfies the Riccati algebraic equation which results from equating to zero the 
time derivatives of P  in the Riccati differential equations. Thus, the steady-state LQ 
controller is a specific type of state space. Under mathematical mild conditions (e. g. 
controllability of the state space realization considered), which amount to the problem 
being well posed in engineering terms (meaning that the right actuators and sensors are 
being used), the closed loop poles are such that the closed loop system is stable and 
possesses good stability margins. For discrete time plants the results parallel these. The 
structure of this article is as follows: After the introduction (section 1), which provides 
motivation and an overall view, the LQ regulator problem in continuous time is 
considered in section 2 for a finite optimization interval. Section 3 presents the resulting 
regulator in steady state, yielded by the limit when the optimization horizon is made 
larger and larger, the corresponding properties being considered in section 4. Section 5 
parallels the theory presented in sections 2 to 4 for discrete time problems. Section 6 
briefly considers numerical methods for the LQ problem. Finally, section 7 draws 
conclusions. 

1. Introduction 

LQ control refers to a problem in which a linear plant is to be controlled such as to 
minimize a quadratic cost. The following two examples help in elucidating about the 
problem to consider as well as the type of applications it might help solving. 
 
Example 1.1 
 
Choosing among alternative policies so as to best control the economy is among the up-
most challenging and controversial problems facing humankind. Typical policy 
problems range from the choice of tax level to the way money supply should be 
adjusted, whether government expenditures should be increased or decreased or how 
Central Banks should adjust credit conditions. In an Automatic Control framework, 
these variables are seen as manipulated variables, affecting in a dynamic way other 
variables such as the rate of inflation, interest rates, the unemployment rate or the gross 
national product (GNP). The overall objective of the economic policy consists in 
stabilizing and regulating this system. This includes goals (selected according to Society 
common Will) such as the minimization of unemployment, the control of inflation, the 
desired rate of economic growth, the maintenance of a high level of investment or the 
redistribution of income through taxes and transfers. 
 
The design of economic policies is considerably complicated due to aspects such as the 
dynamic structure of the economic system, its non-linear character and time variant 
features. Combined with the constraints imposed on both the state and manipulated 
variables, this results in a formidable optimization task. 
 
If, however, short term optimization is considered, a linear model can be used yielding a 
tractable problem. For that sake, the control problem is structured so that the aim of the 
optimal policy plan is to make the system state vector )(kx  track as closely as possible 
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a nominal state vector )(kxn , subject to )(ku , the manipulated variables vector, track a 
nominal control vector )(kun . To say it in plain words, one would like variables such as 
the GNP, investment or unemployment to follow as closely as possible “ideal” time 
paths throughout the planning period. 
 
In a mathematical setting this can be phrased as minimizing with respect to the sequence 
{ }Nkku ≤≤0),(  the functional 
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where Q  is an nn×  positive semi-definite matrix, xn dim=  and R  is a positive 
definite matrix. 
 
The functional J  has two main parcels: The first one has to do with the state x  and the 
other has to do with the manipulated variable u . Start by considering the first parcel. In 
the ideal case in which the state )(kx  exactly matches the nominal value )(kxn  for all 
discrete times k , this parcel will be zero. In general this will not be possible and, at 
most, some positive (since the cost is quadratic) minimum value will be attained. 
Consider now the second parcel, which involves the manipulated variable, u . Again 
this puts a penalty on the deviations of )(ku  from its nominal value )(kun . In general, a 
kind of  “water bed effect” takes place: Good tracking of  )(kxn  by  )(kx  yields 
deviations of )(ku  with respect to )(kun  and vice-versa. The outcome of the 
optimization is a sequence of values of the manipulated variable u  which “keeps the 
right balance”  with respect to the trade-off of minimizing the sum composing J . 
Matrices Q  and R  allow to modify the relative importance given to one or the other 
parcel, as well as to the different entries of the vectors x  and u , being thus important 
“knobs” for achieving solutions with the desired properties. 
 
Example 1.2 
 
Airplanes are provided of moving surfaces (such as ailerons, the rudder or rear wing 
deflectors) which allow the pilot to influence its movement (as described by variables 
such as pitch, roll or yaw). Although an aircraft is a highly coupled multivariable 
system, for several purposes its dynamics may be decoupled in two main blocks, 
corresponding to longitudinal and lateral movements. 
 
Many problems in aircraft flight control may be adequately formulated in an optimal 
control framework. Some refer to linear dynamics and involve a quadratic cost. As an 
example, consider the problem of designing an auto-pilot for the longitudinal movement 
of an airplane, with the objective of maintaining small vertical acceleration. Similar 
examples for lateral auto-pilots could be provided as well. 
 
The longitudinal perturbations of an airplane in horizontal cruising flight may 
approximately be described by the second order linear state space model 
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where α  (perturbation from cruise angle of attack) and q  (rate of perturbation from 
cruise pitch angle of the zero lift axis) are the state variables (assumed available for 
direct measurement) and δ  (elevator deflection increment) is the manipulator variable. 
The parameters τ  (lifting time constant), 0ω  (undamped pitch natural frequency) and 

eQ  (elevator effectiveness) depend on the airplane. 
 
For such a system, a linear controller computes the manipulated variable from the state 
measurement by 
 

qkk 21 −−= αδ  
 
One possibility for computing the regulator gains 1k  and 2k  consists in selecting them 
such as to minimize 
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where 0α , 0q  and 0δ  are constants. These constants play the role of weights of the 
terms forming the functional J  and provide the design engineer with “knobs” for 
adjusting the closed loop response obtained. 
 
Define [ ]': qx α= , δ=u  and the matrices 
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With these definitions, the cost functional J  is written as 
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which is a standard form to be considered below. 
 
Other examples, e. g. in wide apart fields such as process control, ship auto-pilots or 
water management could also be presented, showing that a wealth of problems may be 
recast as optimal control problems formulated for linear plants and in which a quadratic 
cost is to be minimized – the LQ problem. 
 
Although it can be argued that many “real life” problems are non-linear, LQ optimal 
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control methods can contribute to the solution even in these cases. Indeed, there are 
classes of non-linear problems whose solution can be approximated by using LQ 
methods. For instance, algorithms for non-linear optimal design based on the theory of 
the second variation and quasi-linearization resort to the solution of a sequence of linear 
problems. In this vein, another example is provided by piecewise linear quadratic 
optimal control. This last strategy applies to a class of non-linear systems which can be 
approximated by piecewise linear models (local models). For each linear local model an 
LQ controller is designed, the global controller being obtained by a suitable 
concatenation of these local controllers. 
 
From another point of view, the LQ design method is important because it yields 
controllers with a number of desirable properties. In particular, under mild assumptions, 
LQ controllers stabilize the closed-loop. Furthermore, if the state is available for direct 
measurement, the controller presents good gain and phase margins. 
 
It should also be mentioned that basic LQ theory provides one of the key stones which 
supports the important class of design methods known as Predictive Control for linear 
plants (see the topic Model-based Predictive Control). 
 
This article is concerned with the basic theory of the LQ regulator, in both continuous 
and discrete time, when the state of the plant to be controlled is available for direct 
measurement. A thorough understanding of the basic regulator is quite important for 
dwelling into its extensions, such as the situation in which the state is not available for 
direct measurement and must be estimated from input/output data (see LQ-stochastic 
control) or the tracking of nonzero references (see also Servo control design). 
 
The approach followed here relies on the application of either Pontryagin’s Maximum 
Principle (see  Pontryagin’s Maximum Principle) or Bellman’s Dynamic Programming 
(see  Dynamic Programming) to the type of dynamic model (linear) and cost function 
(quadratic) considered. In continuous time the plant to control is assumed to be 
described by a linear controllable state space model (see  System Characteristics: 
Stability, Controllability, Observability), with the state available for direct 
measurement. The resulting controller for the regulation problem consists in a state 
feedback whose gain K  depends on the solution P  of a non-linear matrix differential 
equation, called Riccati equation. For finite optimization intervals, the matrix P , and 
therefore the vector of feedback gains K , is time dependent. When the optimization 
horizon grows unbound, however, the solution of the Riccati differential equation tends 
to a constant. The solution to the steady state LQ problem is thus given by a constant 
gain feedback control law, whose vector of gains depends on plant parameters, and a 
constant matrix P . This constant matrix satisfies the Riccati algebraic equation which 
results from equating to zero the time derivatives of P  in the Riccati differential 
equations. Thus, the steady-state LQ controller is a specific type of state space 
controller (see Design of State Space Controllers (Pole Placement) for SISO Systems). 
Under mild mathematical conditions (e. g. controllability of the state space realization 
considered), which amount to the problem being well posed in engineering terms 
(meaning that the right actuators and sensors are being used), the closed loop poles are 
such that the closed loop system is stable and possesses good stability margins. For 
discrete time plants the results parallel these. 
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The structure of this paper is as follows: After this introduction (section 1), which 
provides motivation and an overall view, the LQ regulator problem in continuous time 
is considered in section 2 for a finite optimization interval. Section 3 presents the 
resulting regulator in steady state, yielded by the limit when the optimization horizon is 
made larger and larger, the corresponding properties being considered in section 4. 
Section 5 parallels the theory presented in sections 2 to 4 for discrete time problems. 
Section 6 briefly considers numerical methods for the LQ problem. Finally, section 7 
draws conclusions. 

2. The LQ Regulator in Continuous Time 

Consider the linear time varying plant described by the state-space model 
 

)()()()()( tutBxxtAtx +=  (1) 
 
with initial condition 00 )( xtx =  and where, for each [ ]Ttt ,0∈ , ntx ℜ∈)( , mtu ℜ∈)( , 
and the matrices )(tA  and )(tB  have compatible dimensions. 
 
Associate to this plant the quadratic performance index 
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where 0'≥= TT SS  and, for each t , 0)'()( ≥= tQtQ  and 0)'()( >= tRtR . Assume that 
A , B , Q  and R  have entries that are continuous functions of t . Furthermore, assume 
that the final time T  is fixed and known and that no function of the final state is 
specified. 
 
In order to determine the control opt ( )u t  for [ ]Ttt ,0∈  that minimizes J , Pontryagin’s 
Maximum Principle is applied to yield sufficient conditions  on the control function 
maximizing )( 0tJ−  (which is the same as minimizing )( 0tJ ).  For this sake, write the 
Hamiltonian as 
 

)''(
2
1)(')( RuuQxxBuAxtH +++= λ  (3) 

 
where nt ℜ∈)(λ  is the co-state, which verifies the adjoint equation 
 

AQx
x
H ''' λλ +=
∂
∂

=−  (4) 

 
together with the terminal condition 
 

)()()( TxTPT =λ  (5) 
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The stationarity condition is that, along an optimal trajectory 
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∂
∂ RuB

u
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In terms of the co-state, the optimal control verifies thus 

)(')( 1 tBRtu λ−−=  (7) 
 
When the optimal control is used (i. e., along an optimal trajectory), the state x  and the 
co-state λ  verify the system obtained by combining (1) and (4) with (7): 
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The coefficient matrix in (8) is called the continuous Hamiltonian matrix. 
 
Part of the unknown in (8) (the vector x ) is specified for 0tt = , whereas the other part 
(the vector λ ) is specified at the opposite end of the optimization interval, for Tt = . 
For solving this two-point boundary value problem, assume that there is a matrix 

[ ]TtttP ,),( 0∈ , such that, for each t  
 

)()()( txtSt =λ  (9) 
 
In order to find the matrix )(tS , differentiate (9) and use (8) and again (9) to get 
 

0)''( 1 =+−++ − xQSBSBRSASAS  (10) 
 
Since (9) is to hold for all x , the matrix S  must be selected such as to verify the matrix 
Riccati equation for Tt ≤ : 
 

QSBSBRSASAS +−+=− − '' 1  (11) 
 
with terminal condition 
 

T( )S T S=  (12) 
 
In terms of the solution of the Riccati equation (11), the optimal controller is thus 
defined by the time varying state feedback control law 
 

opt opt( ) ( ) ( )u t K t x t= −             cc (13) 
 
with the optimal feedback gain given by 
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1
opt ( ) ' ( )K t R B S t−=  (14) 

 
The following theorem holds: 
 
 
 
 
Theorem 2.1: LQ regulator in continuous time 
 
The problem of minimizing the cost functional (2) when the plant state obeys model (1) 
and the matrices in (1) and (2) satisfy the assumptions made, is solved by the state 
feedback control law  (13) with the optimal gain given by (14), where )(tS  is the matrix 
function staisfying the Riccati equation (11) with terminal condition (12). The matrix 

)(tS  exists for all [ ]Ttt ,0∈ . 
 
Under the optimal control, the value of the performance index is given by 
 

)()()('
2
1)( 0000 txtStxtJ =  (15) 

 
If 0)( >tR  for all [ ]Ttt ,0∈  this actually corresponds to a minimum. 
 
Solving the LQ regulator problem implies the solution of the Riccati equation (11) 
together with its terminal condition (12). This can be done off-line, the resulting 
function S  being used to compute optK  which is then stored in the memory of the 
control computer. During plant operation the control is then simply computed from (13) 
by retrieving opt ( )K t  from memory. 
 
Example 2.1 
 
Consider the open-loop unstable first-order linear system described by 
 

)()()( tutxtx +=  (16) 
 
with initial condition 
 

1)0( =x  
 
x  being a scalar. The control law is to be chosen such as to minimize the quadratic cost 
 

[ ]dttrutxJ
T

∫ +=
0

22 )()(
2
1  (17) 

 
Both 0>T  and 0>r  are fixed in each case, but several situations will be considered. 
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The solution to this LQ optimal control problem is given by 
 

)()()( txtKtu −=  (18) 
 
where the optimal feedback gain is given by 
 
 

)(1)( tS
r

tK =  (19) 

 
and S  is a scalar function satisfying the first order Riccati differental equation 
 

1)(1)(2)( 2 −+−= tS
r

tStS  (20) 

 
with the terminal condition 
 

0)( =TS  (21) 
 
Eq. (20) may be solved by separation of variables. Alternatively, (20, 21) may be 
converted to an initial value problem by reversing time according to the change of 
variable tT −=τ . In the transformed time scale τ  the terminal condition (21) becomes 
an initial condition and standard numerical packages may then be used. 

 

 
 

Figure 1 – Example 2.1: LQ control of a first order plant. 
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The numerical solution of the above problem may be seen in Figure 1 for two different 
values of r  (namely, 1=r  and 1.0=r ) and 6=T . The graphic for S  also shows, 
superimposed, the solution for different values of T  and 1.0=r . As can be seen, the 
controller gain K  is almost constant during most of the optimization interval and then 
has a transient, for t  close to T . Since K  follows S , this is a consequence of the 
evolution of this function, the transient appearing in order to meet its specified terminal 
value. 
 
In the period of time in which K  is constant, its value is higher the smaller the value of 
r . This should be expected since r  weights the manipulated variable energy, in the cost 
function J  defined by (17). A smaller value of r  leads to a more “energetic” control 
action, which will bring the state to zero faster. This is apparent in Figure 1, where 

)0(u  is higher for 1.0=r  than for 1=r , while the state function for 1.0=r  is below 
the corresponding curve for 1=r . 
 
Look now at the curves for S  obtained for different values of T  (viz. 5.0=T , 2, 4 and 
6) and shown in the lower right graphic of Figure 1. When T  is taken larger and larger, 
the period of time in which S  is approximately constant increases more and more. In 
case T  would be very large, one would expect the solution of the Riccati equation (and 
therefore the feedback gain) to be constant most of the time. Thus, the optimal 
performance would not be much different if the differential equation (20) is replaced by 
the following algebraic equation 
 

0112 2 =−+− S
r

S  (22) 

 
Indeed, assuming S  to be constant, its derivative vanishes and (20) reduces to (22). 
This motivates the consideration of a suboptimal strategy, known as the steady-state LQ 
controller, obtained, for time invariant plants and constant weight matrices, by letting 

∞→− 0tT . 
 
- 
- 
- 
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