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Summary 
 
This article studies the problem of decoupling. This general term can be divided into 
two main sub-categories: dynamic and static decoupling. Dynamic decoupling is more 
general and guarantees that under any operating conditions, the manipulated variables 
influence independently the respective outputs. Static decoupling on the other hand is 
concerned only with the problem of steady-state, hence decoupling is guaranteed only 
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for a special choice of inputs - step changes and in general operating regime interactions 
between outputs occur.  
 
The term decoupling generally means diagonal decoupling, i.e. each input/output is 
independent. When certain inputs/outputs are grouped together, various decoupling 
regimes can be obtained: block decoupling when some subsystems are independent, or 
triangular decoupling where some outputs influence the other outputs but not vice versa.  
The last part of the article is devoted to the decoupling issues in process control design 
where several simplifications lead to specialized control strategies.  
 
The questions that will be answered when investigating decoupling control design are:  
 
• Is it possible to decouple the given system?  
• What kind of decoupling can be realized?  
• What kind of controller is required ?  
• What are consequences and undesired effects of decoupling ?  
 
1. Introduction 
 
Multi-input multi-output control systems occur very frequently in practice and 
constitute difficult control problems for the operating personnel.  
 
Consider for example a distillation column where control over concentration of multiple 
products is desired and the operators can change various flows within the column. 
However, change of any manipulated variable influences all concentrations and it is 
difficult to manipulate all flows simultaneously to obtain the desired effect. Other 
common examples may include control of flying objects (aircrafts, helicopters, landing 
modules), electrical devices (turbines), and many more, where in many situations it is 
required to change several variable simultaneously to produce desired values of 
controlled variables.  
 
A suitable operating practice is to find pairs of the input-output variables where the 
corresponding manipulated variable has the maximum effect on the output variable and 
to design simple controllers for each pair. In this phase of control design, techniques of 
loop selection are used. If the choice of input-output pair is difficult to perform, it is 
possible to insert a precompensator that makes the system diagonally dominant. 
Pursuing this idea further, a some way of compensation can be sought that makes the 
compensated closed-loop system totally diagonal. This is called decoupling. In this case 
each output variable is influenced only by one manipulated variable and the problem of 
multivariable control is then reduced to a series of singlevariable control problems that 
are more easily solved.  
 
This article studies various categories and special cases of decoupling. In the first part 
multivariable system description and some selected compensation strategies are 
introduced that will be used throughout the article. Next, motivation for decoupling 
control is shown on control of a heat exchanger. Next sections serve a theoretical 
foundations of the results presented for the heat exchanger. These include dynamic, 
static decoupling and process control decoupling strategies: The first of them deals with 
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dynamic decoupling. It begins with the conditions that are to be satisfied in order to 
achieve decoupled closed-loop system. Selected choices of dynamic compensation are 
then discussed starting from the most versatile dynamic feedback with input dynamics 
and then showing which are conditions that enable to use less general compensation 
strategies as linear state feedback and linear output feedback. The first subsections treat 
diagonal decoupling, afterwards also block-diagonal and triangular decoupling 
strategies are proposed. Next section deals with static decoupling and shows again 
conditions that assure it. Finally, the last section gives an overview of process control 
decoupling strategies.  
 
1.2. Preliminaries  
 
See also Chapter Control of Linear Multivariable Systems for the definition of further 
symbols and notations. 
 
1.1.1. Multivariable System Description  
 
A linear time invariant deterministic continuous-time multivariable system with p 
outputs y, m inputs u, and n states x can be described as (see Description and 
Classification.) 
• State-space system [ ], , ,A B C D  (see Canonical State Space Representation and 

Feedback.) 
 
x Ax Bu
y Cx Du
= +
= +  (1) 

 
where [ ], , ,A B C D are matrices of dimensions [ , ]A n n , [ , ]B n m , [ , ]C p n , and [ , ]D p m . 
 

• Transfer function ( )T s  
 

( )y T s u= , (2) 
 
where ( )[ , ]T s p m  is a matrix with entries transfer functions corresponding to the 
appropriate input/output pair. 
 

• Matrix fraction description R(s), P(s) with z being the partial state (see Polynomial 
and Matrix Fraction Description.) 
 

     ( ) ( ), ,y R s z u P s z= =  (3) 
 
where R(s), P(s) are polynomial matrices of dimensions [ , ]P m m , [ , ]R p m  
respectively, P(s) is column proper with column degrees , 1,...id i m= . 

 
The relation between these forms is 
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( ) ( ) ( ) ( )1 1T s C sI A B D R s P s− −= − + =  (4) 
 
1.1.2. Control Structures Used for Decoupling  
 
The controllers that will be used for decoupling design can be divided into four 
categories (reference output denoted by r):  
 
• Static feedforward (SFF) u Gr=  
• Constant linear output feedback (LOF) u Hy Gr= +  
• Linear state feedback (LSF) ( )u Fx Gr H s y Gr= + = +  
• Linear state feedback with input dynamics (LSFID)  
 
1.1.3. Square and Non-square Systems  
 
Decoupling is mainly used for square systems, i.e. systems with equal number of inputs 
and outputs. In general, we can distinguish three cases: m p> , m p< , and m p= .  
 
If there are more outputs than inputs ( )m p< , the fundamental problem is to define 
decoupling. A possible approach is to define subsystems where some subset of inputs 
influence only a subset of outputs without affecting other outputs, hence to divide the 
original ( ),m p  system into smaller ( ),i im p  subsystems.  
 
The methods given in the subsequent sections can then be applied to each subsystem. If 
it is possible to decouple all subsystems independently, then it is possible to decouple 
them simultaneously.  
 
The situation when there are more inputs than outputs ( )m p> is in fact a more useful 
as with the equal number of inputs and outputs. Clearly, in the former case there are 
more degrees of freedom to obtain a decoupled closed-loop system.  
 
1.1.4. Problem Formulation  
 
The requirement for a various versions of dynamic decoupling is closely related to 
constraining the closed-loop transfer function to some particular form. More 
specifically, the system will be diagonally decoupled if its transfer function matrix is 
diagonal and of full rank. The requirement of triangularly decoupled system is 
equivalent to the transfer function matrix being (lower) triangular and full rank. Finally, 
a system is said to be block decoupled if its transfer function matrix is block diagonal 
and has full rank.  
 
2. Control of a Heat Exchanger 
 
2.1. Model  
 
To explain the ideas of decoupling, let us start with an example of a heat exchanger 
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control. We consider a heat exchanger in form of a sphere tank with the diameter r , 
supplied by input flow of cold liquid with temperature 0ϑ  and electrically heated. 
Within the exchanger, level h and temperature ϑ are to be controlled, the manipulated 
variables are input flowrate 0q  and heat powerω , and the disturbance is the inlet 
temperature 0ϑ . Output flowrate of the heated medium 1q depends on the height of the 

liquid in the tank and is given as 1q k h= . We assume for simplicity that the height of 
the liquid is smaller than r , the exchanger is well mixed and insulated, and that heat 
capacity pc and density ρ  are constant.  
 
With these assumptions, material and energy balances of the heat exchanger are as 
follows 
 

0 1
dVq q
dt

ρ ρ ρ= +  (5) 

 

0 0 1p p p
dVq c q c c

dt
ϑρ ϑ ω ρ ϑ ρ+ = +  (6) 

where V is the volume of the liquid inside of the tank depending on actual liquid level 
h and for a sphere it is given as 
 

21( ) (3 )
3

V h h r hπ= −  (7) 

 
After some manipulations, the differential equations describing dynamic behavior of 
controlled variables are given as 
 

( )0
1
'( )

dh q k h
dt V h

= −  (8) 

 

( )0 0
1
( ) p

d q
dt V h c
ϑ ω ϑ ϑ

ρ

⎡ ⎤
= + −⎢ ⎥

⎢ ⎥⎣ ⎦
 (9) 

 

where ( )'( ) dV hV h
dh

= . The actual values of all parameters have been chosen as 2r = m, 

31 /kg mρ = , 4.2 / /pc J kg K= , 2.50.05 / sk m= . The steady state values of input 

signals are 3
0 0.05 / ssq m= , 1 / ss Jω = , 0 300sϑ = K. 

 
From the control point of view, the heat exchanger represents nonlinear 2-input, 2-
output system of a triangular structure as the height h  is not coupled with the heat 
powerω . Response of the exchanger to step changes in manipulated variables is shown 
in Fig. 1. As expected, the height is not influenced by the step change of the heat power 
at time 1000t = s whereas temperature is influenced by both input flowrate 0q  change 
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at time 20t = s and the heat power at time 1000t = s.  
 

 
 

Figure 1: Step responses of the heat exchanger 
 

Steady state of the exchanger is given as 
2

0
s

s q
h

k

⎛ ⎞
= ⎜ ⎟⎜ ⎟
⎝ ⎠

 (10) 

 

0
0

s
s s

s
pq c

ωϑ ϑ
ρ

= +  (11) 

 
For the control design purposes, a linearized model in deviation variables will be 
developed. Let us denote the deviations from steady state 1 0 0

su q q= −  , 2
su ω ω= − , 

1
sx h h= − , 2

sx ϑ ϑ= − and assume that the inlet temperature is constant. 
 
After the Taylor expansion of the nonlinear elements, the original nonlinear model can 
be approximated in the neighborhood of the steady state by a linear state space model of 
the form 
 

1 11 1 11 1 1 1

2 22 2 21 22 2 2 2

0 0 1 0
,

0 0 1
x a x b u y x
x a x b b u y x

⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎛ ⎞
= + =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠ ⎝ ⎠
 (12) 

 
or, in the transfer function matrix as 
 

11

11

21 22

22 22

0
( )

b
s a

T s
b b

s a s a

⎛ ⎞
⎜ ⎟−⎜ ⎟= ⎜ ⎟
⎜ ⎟⎜ ⎟− −⎝ ⎠

 (13) 
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We can see that the system states are already decoupled and that the interactions are 
caused only by the matrix B . Moreover, as in the nonlinear case, the transfer function 
matrix ( )T s is triangular and the output 1y is decoupled from the input 2u . 
 
2.2. Static Decoupling  
 
Let us consider the simplest decoupling strategy – static decoupling. In this case we 
desire to have a situation when a step change in the static, steady state level of each 
input is reflected by a corresponding change in the steady-state level of the 
corresponding output and only that output.  
 
A simple feedforward solution as described in a more detail in section 4 specifies a 
constant precompensator matrix G  that manipulates reference signals and is given as 
the inverse of the matrix (0)T  
 

1
11 11

11 11

21 22 11 21 22

22 22 11 22 22

0 0
b a
a b

G
b b a b a
a a b b b

−
⎛ ⎞ ⎛ ⎞
− −⎜ ⎟ ⎜ ⎟

⎜ ⎟ ⎜ ⎟= =⎜ ⎟ ⎜ ⎟
− − −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 (15) 

 

 
 

Figure 2: Static decoupling control design for the heat exchanger 
 
Figure 2 compares behavior of the linear and nonlinear models. For the linear model, 
this control design resulted in full dynamic decoupling (not only in steady states, but 
also during transients, see section 3) as the coupling effects are not caused by the system 
matrix A . The nonlinear model, however, differs from the linear model significantly at 
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time 300t = s and still exhibits some small coupling effects. 
 

2.3. Dynamic Decoupling 
 
Even if we have seen that dynamic decoupling is not necessary in this case, we can 
design a controller that guarantees decoupling behavior all the time also for more 
complex processes.  
 
The most general procedure is linear state feedback with input dynamics described by 
the algorithm 1 in section 3.1. The closed-loop poles have been specified as  
 
( ) ( )ˆ diag s 0.05, s 0.05P s = + +  (16) 

 
and the results are both for linear and nonlinear models are shown in Fig. 3. We can see 
that response speed is much improved. However, the problem with nonlinear model still 
remains. 
 

 
 

Figure 3: Dynamic decoupling design for the heat exchanger 
 

Very often, the real input signals are constrained in the magnitude. The effect of the 
constraints is much more important in the decoupled closed-loop system.  
 
Fig. 4 shows both manipulated and controlled variables when upper level constraint has 
been imposed as 1 0.05u < . We can observe, that even in the linear case, the closed-loop 
behavior exhibits couplings at time 300t = s.  
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Figure 4: Saturation effects from input clipping for the heat exchanger 
 
There are several approaches that can counteract this situation. In Fig. 5, the second 
input is scaled down by the same amount as the first input. We can see that decoupled 
behaviour is again established. 
 

 
 

Figure 5: Input scaling in the presence of constraints for the heat exchanger 
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