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Summary 
 
Model Based Predictive Control (MBPC) is a control methodology which uses on-line 
(=in the control computer) a process model for calculating predictions of the future 
plant output and for optimizing future control actions. In fact MBPC is not a single 
specific control strategy but rather a family of control methods which have been 
developed with certain ideas in common. In this chapter these ideas are introduced and 
developed step by step, specifically for linear systems and using the principles of the 
EPSAC methodology as a typical member of the MBPC family. The MBPC method is 
described here in detail both for Single Input Single Output (SISO) and for Multiple 
Input Multiple Output (MIMO) systems and attention is paid to the practically important 
concept of constrained control. 
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Predictive control is nowadays quite popular and successful in real-life industrial 
applications.  
 
The actual computer implementation, for which the algorithms are presented in detail in 
this contribution, turns out to be extremely simple although computationally more 
demanding than the widely used PID controller. However, with the current computer 
power available, computational complexity is not the real restriction. The performance 
of MBPC is however critically dependent on the quality of the dynamic process model 
that is available. The first step in a predictive control design is then the modeling and 
identification of the process. In this contribution it is assumed that a good process model 
is available. 
 
1. Introduction 
 
Model Based Predictive Control (MBPC) is a control methodology developed around 
certain common key principles. Two of these principles are: 
 

• explicit on-line use of a process model to forecast the process output at future 
time instants; 

• calculation of an optimal control action based on the minimization of one or 
more cost functions, possibly including constraints on the process variables. 

 
The various algorithms, members of the large MBPC-family, differ mainly in: 
 

• the type of model used to represent the process and its disturbances; 
• the cost function(s) to be minimized, with or without constraints. 

 
The MBPC-strategy is simple to understand and makes good practical sense: 1) use the 
process model to predict the evolution of the process output as a function of future 
(intended) control actions and 2) minimize (over these control actions) a specified cost 
index; this cost includes the errors between desired and predicted process outputs, and 
possibly also the required control effort. 
 
This type of control is of an open generic nature: the basic principles of predictive 
control became now well-known and well-understood, and are open to many useful 
future contributions from the academic as well as from the industrial world. The 
methodology has also been widely accepted in both worlds, contrary to many other 
control strategies. Many applications of predictive control are nowadays successfully in 
use in all fields of industrial activity. The good performance of these applications is well 
appreciated and has triggered an increasing interest in the methodology during the last 
decennium, although the pioneering work started already 25 years ago. 
 
Industrial developments in Europe (MAC) and in the USA (DMC) resulted around 1980 
in the first commercial control packages using explicitly a process model to predict and 
to control the process variables. Simultaneously, although independently, some 
European academic research groups, with a strong history in adaptive prediction and 
control, started the development of controllers based on multistep predictors (EPSAC; 
EHAC; MUSMAR; GPC). 
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These names are only stated to be indicative and represent a few of the (earlier) MBPC 
algorithms. Since the beginning of the 1990s, a real boom in the number of industrial 
MBPC applications has been reported (first in the USA and Japan, later also in Europe), 
in parallel with a dramatic increase of the academic research activity on MBPC-related 
topics. 
 
A number of benefits are at the basis of this growing success story: 
 

• MBPC concepts can be mastered in a short time by technical staff members with 
a limited control background: the principles are intuitive and the design 
parameters are performance oriented; 

• MBPC can handle nonlinear multivariable interactive control problems in a 
straightforward way; 

• MBPC is currently the most natural approach to constrained control, a topic 
which is of utmost importance in everyday industrial practice (actuator 
constraints, safety constraints, quality constraints, …); 

• MBPC has inherent dead-time compensation of time-delay processes and 
inherent feedforward compensation of measured disturbances; it is able to 
control processes with unusual dynamic behavior (such as non-minimum phase, 
highly oscillatory or unstable processes); 

• MBPC is an open methodology, based upon certain key principles, but allowing 
for future extensions, contributions, alternatives and improvements from many 
different sources; 

 
Besides these convincing benefits, which gradually attracted more members into the 
MBPC club, the industrial dissemination of MBPC technology was also made possible 
by the fact that certain MBPC-enabling technologies have now reached a certain state of 
maturity: 
 

• modeling and identification: the techniques are now diverse and powerful, able 
to work in an adverse environment, even with poor signal/noise ratios; 

• digital computers: they are fast, reliable and affordable, able to crank on-line 
complex algorithms such as constrained MBPC. 

 
Indeed, to be fair w.r.t. the popular and relatively easy PID controller (the ‘bread and 
butter’ of the instrumentation engineer in industry), it should be mentioned that MBPC 
does need a process model (and model identification still requires much effort and 
expertise) and that the computational requirements of MBPC are of an order of 
magnitude larger than those of PID. 
 
In a sound engineering approach, PID and MBPC should be considered as 
complementary rather than as competitive technologies: PID deals with the bulk of 
control loops, mainly situated at the lower level of the control pyramid 
(regulatory/stabilizing/DDC controls); MBPC tackles the fewer but economically more 
important loops, situated mainly at the optimization level. This is the current trend in the 
process and production industries. 
 
Besides this, MBPC might also have a role to play at the product level: more and more 
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of our sophisticated mechatronic devices require a high-performing control system to 
function adequately; such control system is an integrated part of the product and is vital 
for its operation. 
 
2. The MBPC Principle 
 
The following notation will be used throughout this text: 
 

• t: denotes the discrete-time index (t = 0, 1, 2, …) 
• u(t): denotes the process input (manipulated variable MV); 
• y(t): denotes the process output (controlled variable CV); 
• w(t): denotes the setpoint; 
• u(t+k|t): denotes future values of the input, postulated at time t; 
• y(t+k|t): denotes predicted values of the output based on: 
⇒ measurements available at time t: { }"" ),2(),1(,),1(),( −−− tututyty  
⇒ future postulated values of the input: { }( | ), ( 1| ),u t t u t t+ " . 

 

 
 

Figure 1: The MBPC Principle  
 
Referring to Figure 1, the MBPC principle is characterized by the following strategy: 
 

• at each ‘current’ moment t, the process output y(t+k) is predicted over a time 
horizon k=1..N2. The predicted values are indicated by y(t+k|t) and the value N2 
is called the prediction horizon. The prediction is done by means of a model of 
the process; it is assumed that this model is available. Moreover in this text only 
linear models will be dealt with (see Model Based Predictive Control; see Model 
Based Predictive Control for Nonlinear Systems). The forecast depends on the 
past inputs and outputs, but also on the future control 
scenario{ }2( | ), 0 1u t k t k N+ = −…  (i.e. the control actions that we intend to 
apply from the present moment t on); 

• a reference trajectory { }2( | ), 1...r t k t k N+ = , starting at r(t|t)=y(t) and 
evolving towards the setpoint w, is defined over the prediction horizon, 
describing how we want to guide the process output from its current value y(t) to 
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its setpoint w; in case the process has a time-delay (dead-time), it is reasonable 
to start the reference trajectory after the time-delay (ref. Figure 1);  

• the control vector { }2( | ), 0... 1u t k t k N+ = −  is calculated in order to minimize a 
specified cost function, depending on the predicted control 
errors [ ]{ }2( | ) ( | ) , 1...r t k t y t k t k N+ − + = ; also, in most methods there is some 

structuring of the future control law { }2( | ), 0... 1u t k t k N+ = −  and there might 
also be constraints on the process variables; these are all very important 
concepts of MBPC which will be explained later on; 

• the 1st element u(t/t) of the optimal control vector { }2( | ), 0... 1u t k t k N+ = −  is 
actually applied to the real process. All other elements of the calculated control 
vector can be forgotten, because at the next sampling instant all time-sequences 
are shifted, a new output measurement  y(t+1) is obtained and the whole 
procedure is repeated; this leads to a new control input u(t+1|t+1), which is 
generally different from the previously calculated u(t+1|t); this approach is 
called the ‘receding horizon’ principle. 

 
In above strategy, some important elements characterizing MBPC can be recognized: 
 

• prediction by means of a process model; 
• specification of a reference trajectory; 
• structuring of the future (postulated) control law; 
• definition of a cost function (and constraints); 
• calculation of the optimizing control scenario. 

 
The MBPC strategy can be visualized in the block scheme of Figure 2: 
 

 
 

Figure 2: MBPC Strategy as a Block Scheme 
 
3. SISO MBPC 
 
3.1. The Process Model  
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The process is modeled as  
 

)()()( tntxty +=  (1) 
 
which is illustrated in Figure 3, with: 
 

• y(t): (measured) process output 
• u(t): process input 
• x(t): model output 
• n(t): process/model disturbance 

 

 
 

Figure 3: Process Model  
 
In this section of the chapter, the control strategy is presented for a SISO-process 
(Single Input Single Output), i.e. only 1 measured output and 1 control input. In Section 
5, the extension to a MIMO-process (Multiple Input Multiple Output) will be presented. 
 
The disturbance n(t) includes all effects in the measured output y(t) which do not come 
from the model output x(t). This is a fictitious (and thus non-measurable) signal. It 
includes effects of process disturbances, of other (unmodeled) process inputs, of 
measurement noise, of model errors, etc. The net effect of all these unknown 
disturbances has a stochastic character, generally with non-zero average value. It can be 
modeled by a colored noise process: 
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where q-1 is the backward shift operator, i.e. )()( ntstsq n −=− , s(t) being a time-
dependent signal and t denoting the discrete-time index (t=0,1,2,...). The filter 

)()( 11 −− qDqC  is the disturbance model. 
 
It is common practice in the MBPC approach to consider this disturbance model as a 
design filter. A smart choice of this filter leads to: 
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• elimination of non-zero average disturbances (if D(q-1) contains the factor Δ=1-
q-1); 

• suppressing of disturbances in a specific frequency range; 
• increasing of robustness against modeling errors. 

 
A popular (but sub-optimal) ‘default’ structure for the disturbance model is:  
 

1

1 1

( ) 1
( ) 1

C q
D q q

−

− −=
−

. 

The model output x(t) represents the effect of the process input u(t) on the process 
output y(t). This is again a non-measurable signal, as only the combined effect of 
(process input + disturbances) is measurable. 
 
The relationship between u(t) and x(t) is a dynamic relationship, i.e. the current output 
x(t) does not depend on the current input u(t) but on the previous inputs 
{ }"),2(),1( −− tutu  and on the previous outputs { }"),2(),1( −− txtx . Moreover this 
relationship can be described either by a linear or by a nonlinear dynamic model (e.g. a 
neural network). Most real-life processes are nonlinear, but fortunately many of them 
can be locally linearized. 
 
In general, the effect )()( txtu ⇒  can thus be represented by the generic dynamic 
model: 
 

[ ]"" ),2(),1(,),2(),1(f)( −−−−= tututxtxtx  (3) 
 
where f[...] is supposed to represent a known (possibly nonlinear) function. If the 
process model in a specific application is unknown, it has to be identified as the first 
step of the MBPC design (see Modeling, Identification and Parameter Estimation). In 
the case of a time-varying process, the process model has to be estimated in real-time 
(see Adaptive Predictive Control). The EPSAC-MBPC approach described in this text 
can deal with linear as well as with nonlinear systems. However essentially the linear 
version will be presented here, with a short extension to the nonlinear case. A more 
detailed treatment of nonlinear MBPC is not the topic of this chapter (see Model Based 
Predictive Control for Nonlinear Systems). 
 
This means that the function f[…] is supposed from now on (except in Section 4.3) to 
be linear in {x(t-1), x(t-2), …, u(t-1), u(t-2), …}. Popular linear models are the transfer 
function and the linear state space model (see General Models of Dynamic Systems). As 
an example, consider the transfer function model: 
 

1

1

( )( ) ( )
( )

B qx t u t
A q

−

−=  or  

1 2 1 2( ) ( 1) ( 2) .... ( ) ( 1) ( 2) ...
an ax t a x t a x t a x t n b u t b u t= − − − − − − − + − + − +  (4) 

 
Using the system model (4) and the disturbance model (2) in the generic process model 
(1) leads - for the special case of 1 1 1( ) (1 ) ( )D q q A q− − −= −  - to the popular CARIMA-
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model: 
 

1
1 1

1

( )( ) ( ) ( ) ( ) ( )
1
C qA q y t B q u t e t

q

−
− −

−= +
−

 (5) 

3.2. The EPSAC Approach to MBPC 
 
3.2.1. The Multistep Predictor 
 
As explained in Section 2, a fundamental step in the MBPC methodology consists of the 
prediction of the process output { }2( | ), 1y t k t k N+ = …  based on: 
 

• measurements available at time t: { }"" ),2(),1(,),1(),( −−− tututyty  
• future (postulated) values of the input: { }( | ), ( 1| ),u t t u t t+ " . 

 
In the GPC approach to MBPC, the CARIMA model is used and a k-step-ahead 
prediction problem is solved using Diophantine equations (see Adaptive Predictive 
Control). In the EPSAC approach, the generic model (1)(2)(3) introduced in Section 3.1 
is used, and a multistep prediction problem is solved using filtering techniques. 
 
Note: If the CARIMA model (5) is used as a special case of the generic model (1)(2)(3), 
it can be proven mathematically that both approaches - although fundamentally different 
from the implementation point of view - lead to exactly the same results. 
 
Shifting the process model (1) in time gives: 
 

( | ) ( | ) ( | )y t k t x t k t n t k t+ = + + +  (6) 
 
Prediction of x(t+k|t) 
 
This can be done by recursion of the system model (3). There are 2 possible 
implementation configurations, illustrated for a 3rd order model in Figure 4 and in 
Figure 5: 
 

 
 

Figure 4: Parallel Model  
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Figure 5: Series-Parallel Model  
 
The parallel model (also called independent model) can only be used for stable 
processes. The series-parallel model (also called realigned model) can also be used for 
unstable processes. The difference between both implementation structures is illustrated 
in Figure 6. 
 

 
 

Figure 6: P and S/P Model Implementations  
 
Notice that it can easily be shown mathematically that, for linear systems, both 
implementation forms are equivalent if the disturbance model C(q-1)/D(q-1) is chosen 
appropriately. For the sequel we assume a P-model, but the following strategy is 
completely similar for a S/P-model. 
 
At each sampling instant t, the recursion is started with k=0 and x(t|t) is computed using 
the model input vector [ ]"" )3()2()1()3()2()1( −−−−−− tutututxtxtx , which 
contains values from the past, thus known at time t (available in the computer database). 
Notice that ( ) ( | )x t x t t≡  and that this value has to be saved in the database for further 
use at the next sampling instants. Then for k=1, the previously computed x(t|t) is used at 
the model input to compute x(t+1|t), etc. 
 
Prediction of n(t+k|t): 
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At time t, x(t) can be calculated as described before. Using the measured process output 
y(t), it is then possible to compute the current value of the disturbance n(t) with the 
generic process model (1): )()()( txtytn −= . Notice that the previous values n(t-1), n(t-
2), ... are also available in the database, as they have been computed at the previous time 
instants. 
 
Compute the filtered disturbance signal 
 

)(
)(
)()( 1

1
f tn

qC
qDtn −

−
=  or    

 
...)2()1()(....)2()1()( 21f2f1f +−+−++−−−−−= tndtndtntnctnctn  (7) 

 
and store the result nf(t) in the computer database, where also the previous values nf(t-
1), nf(t-2), … are available. 
 
As the disturbance model (Section 3.1) is given by: 
 

)(
)(
)()( 1

1
te

qD
qCtn −

−
=  (8) 

 
the conclusion is that the signal nf(t) thus calculated will be a white noise with zero 
average value: nf(t)=e(t). Because white noise is by definition uncorrelated, its best 
prediction is the mean value, thus leading to: 
 

f 2( | ) 0, 1n t k t k N+ ≡ = …  (9) 
 
So the best prediction of the disturbance is obtained from 
 

1

f1

( )( | ) ( | )
( )

C qn t k t n t k t
D q

−

−+ = +  (10) 

 
which can be calculated using the corresponding difference equation: 
 

1 2 f 1 f( | ) ( 1| ) ( 2 | ) ( | ) ( 1| )n t k t d n t k t d n t k t n t k t c n t k t+ = − + − − + − − + + + + − +… …
 (11) 
 
The recursion goes from k=1...N2. For k=1, the signal values in the right hand side n(t|t), 
n(t-1|t), ..., nf(t|t), nf(t-1|t), ... are known in the database, while nf(t+1|t)=0 according to 
(9). The computed value n(t+1|t) is then used in the right hand side, together with 
nf(t+2|t)=0, in order to compute n(t+2|t), etc.  
 
As mentioned earlier, it can be shown that this procedure, based on filtering techniques, 
leads to exactly the same solution as the alternative procedure using Diophantine 
equations (see Adaptive Predictive Control). 
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