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Summary 
 
Stochastic systems can be defined as systems which are evolving in time and, for each 
time instant, are characterized by randomly assumed values of their states and, possibly, 
parameters, dimension, structure, and other dynamic features. This chapter describes 
different methods of modeling stochastic systems and provides basic properties of such 
systems and models. The chapter starts with recollection of basic properties of random 
variables, introducing the probability density function, joint and conditional 
probabilities and defining basic operators over probability densities such as expectation 
or covariance. A very important type of probability density functions, the Gaussian 
function is introduced. Next, the attention moves to stochastic processes with definitions 
of correlation and crosscorrelation, introduction of white noise and Wiener process as 
important practical models of stochastic processes. The stationary stochastic processes 
are explained and the idea of ergodicity is presented. The next section describes linear 
models often used in analysis of stochastic processes. Those models are based on 
Markov processes. The spectra of linear stochastic processes are defined and 
polynomial models of discrete time systems are presented. Finally, the mixed stochastic 
deterministic description of systems is introduced which is very important from 
practical point of view, enabling analysis of systems in which there are deterministic 
inputs along with stochastic inputs. 
 
1. Introduction 
 
Practical experience tells us that all the surrounding reality is not deterministic. It is 
impossible to tell exactly what will happen in the future. It is equally true in gambling, 
e.g. playing lottery or betting on  horse races as it is in  engineering systems. Consider a 
typical engineering process, for instance a measurement of temperature of exhaust gas 
from the gas turbine combustion in a gas turbine power plant. Assume that the turbine 
works in steady-state conditions producing constant power with constant supply of gas 
and of air. Even though those conditions are constant, the temperature will exhibit 
oscillations, as shown in Fig .1. Those oscillations are caused by a combination of 
different factors and influences which are impossible or difficult to fully comprehend, 
for instance the changes in the ambient temperature, the changes in the calorific value of 
the fuel, the changes in the ambient temperature, the changes in the calorific value of 
the fuel, the changes in air pressure or vibrations of the turbine fixings. Faced with this 
situation, an engineer responsible for the system has two choices. The first is to say that 
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the fluctuations observed in the measurement are unavoidable and therefore the system 
should be dealt with as if those did not exist. This would lead to deterministic 
procedures and deterministic models of the system. The second possibility is to admit 
the existence of uncertainty and try to investigate whether some knowledge of the 
system and of the system undesirable uncertain effects are minimized. In the gas turbine 
example, the first approach would concentrate on assuring the desired value of the 
output gas temperature, in practice this would mean adjusting the mean value of this 
temperature. However, the second approach may lead to minimization of the 
fluctuations of the temperature, it is to minimization of its variance. 
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Figure 1: Exhaust gas temperature from the gas turbine 
 

If the presence of uncertainty in a system is acknowledged then a model is needed to 
show how this uncertainty is transmitted through the system how it influences the 
system outputs and, possibly, how it changes in time. Among the models of uncertainty 
which are used in engineering systems the most popular are : Stochastic models and 
fuzzy models (see Fuzzy Control Systems). Recently, the models resulting from chaos 
theory are gaining increasing publicity, especially for analysis of non-linear and large 
systems (see Control of Bifurcations and Control). This chapter is devoted to stochastic 
models of uncertain systems. 
 
In the first section we start with a short recollection of main properties and functions of 
random variables. The Gaussian probability density is introduced and independent (and 
dependent) random variables are defined. 
 
In the second section, the stochastic processes are introduced, Autocorrelation and 
crosscorrelation are defined. The idea of ergodicity is introduced which would allow to 
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average over time rather than over realizations of process. 
 
In the third section we show how the stochastic processes can be generated at the 
outputs of dynamical systems. Polynomial and state-space models of systems are 
considered. This section concentrates on linear models. Treatment of non-linear effects 
is a rather complex matter, extending the scope of this chapter. It is only briefly 
mentioned within this section. 
 
2. Random Variables 
 
This section starts with recalling the basic properties of random variables. It explains the 
terms: probability density function, conditional probability, and independent random 
variables. It also introduces the Gaussian distribution function. 
 
2.1. Probability Density Function 
 
Example 1 when throwing a dice with differently colored sides, referred to as 
conducting the basic experiment, there are six possible outcomes, or samples, or 
elementary events, of having a particular color at the top. Such an elementary event will 
be further denoted as ω . The set of all possible outcomes of a basic experiment is 
referred to as the universal set or the sample space, further denoted as Ω . We can 
postulate that the way the dice is built and thrown does not result in one color occurring 
at the top more often than the other ones. This permits us to size up the intuitive 
likelihood of the occurrence of an event in terms of the probability measure: if we define 
the probability of any color showing up at the top as 1, then the probability of a 
particular color showing at the top is 1

6 . We now define a function, referred to as a 

random variable, say, ( )ω≡x x , which associates the particular color, i.e., the 
particular sample ω  in the sample space Ω , with a real number from a set {1,2,…6}. 
Then the probability of a particular value out of this set the random variable takes is 1

6 , 

which, for example for random variable taking the value of 2 can be denoted as 
1
6( 2)Π = =x . The probability that the random variable has a value less than ζ , 

denoted as ( )ζΠ <x , can be presented as a function of ζ as in the Table 1. 
 

ζ  … -1 0 1 2 3 4 5 6 7 … 
( )ζΠ x <  0 0 0 0 1

6  2
6  3

6  4
6  5

6  6
6  6

6  

 
Table 1:  Probability distribution when throwing a dice 

 
Example 2 When throwing two dices, the probability function is determined over two 
dimensional space of possible results and has a value 1

36
for each of the 36 possible 

combinations. The probability that the random variable 1x  has value less than 1ζ  and 
the variable 2x  has value less than 2ζ  is given by the Table 2. 
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\     1ζ  

2ζ    \ 
 
"  

 
0 

 
1 

 
2 

 
3 

 
4 

 
5 

 
6 

 
7 

 
"  

#  0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 
1 0 0 0 0 0 0 0 0 0 0 
2 0 0 0 1

36  2
36  3

36  4
36  5

36  6
36  6

36  

3 0 0 0 2
36  4

36  6
36  8

36  10
36  12

36  12
36  

4 0 0 0 3
36  6

36  9
36  12

36  15
36  18

36  18
36  

5 0 0 0 4
36  8

36  12
36  16

36  20
36

24
36  24

36  

6 0 0 0 5
36  10

36  15
36  20

36
25
36

30
36  30

36  

7 0 0 0 6
36  12

36  18
36  24

36
30
36  36

36  36
36  

#  0 0 0 6
36  12

36  18
36  24

36
30
36  36

36  36
36  

 
Table 2:  Probability density function for the experiment with two dices 

 
This relation permits us to introduce function ( )ζΠ <x  vs. ζ nR∈  for a random vector 
variable x  of dimension n , 
 

1
,

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

#

n

x

x

x

  (1) 

 
referred to as the distribution function. In general, x  can be discontinuous. Introduce 
the equation 
 

1 2

1 1 2 2

2 1

( ) ( and and …and )

( ) ( ) .
ζζ ζζ

ζ ζ ζ ζ

ϕ ϕ
− − − −

Π < = Π < < <

= =∫ ∫ ∫ ∫… …
n

n n

nd d d d
∞ ∞ ∞ ∞

x x x x

x x x x x x
 (2) 

 
This equation defines function ( )ϕ x , referred to as the probability density function. 
Function ( ) ( )ζ ζΠ < ≡ Πx  will be referred to as the probability distribution. A more 
rigorous measure-theoretic description of ( )ζΠ  can be introduced, but will be omitted. 
Notice that if x  is discontinuous random variable (discrete-continuous, or combining 
discrete and continuous values), ( )ϕ x  contains delta functions. For the random 
variables which are discrete in space (e.g. throwing a dice in the example above) the 
equivalent of the probability density function is probability of occurrence of a given 
event. Then, to calculate the distribution function for discrete random processes the 
integral in Eq. 2 is replaced by a summation. 
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The universal set gives rise to a sigma-algebra: the totality of all possible outcomes of a 
combined experiment consisting of the union of basic experiments and their 
complements with respect to the universal set. 
 
2.2. Expectation Operator 
 
If ( )g x  is a function of a random variable described by the differentiable probability 
density ( )ϕ x , the expectation operator of g  is defined as: 
 

{ ( )} ( ( ) ( ))ϕ
−

= = ∫E d
∞

∞
g g x g x x x.   (3) 
 

2.2.1. The Mean Value 
 
The mean value is defined as the expectation operator for the function ( ) ≡g x x , i.e.:  
 

( )ϕ
∞

∞
= ∫ d
-

x x x x.   (4) 
 
2.2.2. The Covariance Matrix 
 
The covariance matrix P  will be defined as the expectation operator with the 
function ( ) ( ) ( )= − − Tg x x x x x , i.e.: 
 

{ }( ) ( ) ( ) ( ) ( )ϕ
−

= − − − −∫T TP E d
∞

∞
x x x x x x x x x x.  (5) 

 
2.3. The Gaussian Probability Density Function 
 
The Gaussian probability density function of the random vector of dimension n is given 
by the expression: 

11 1( ) exp ( ) ( ) .
22( ) det( )

ϕ −⎡ ⎤= − − −⎢ ⎥⎣ ⎦π

T
n

P
P

x x x x x  (6) 

 
where x  is the mean value and P  is the covariance matrix. The shape of the Gaussian 
probability density is presented in Fig.2, for scalar case and in Fig. 3 for the case when 
x  is a vector of size 2. From Eq. 6 it is transparent that the Gaussian probability density 
is fully determined if the mean value x  and the covariance P  are known. Therefore, if 
it is known that a random vector variable is Gaussian then knowledge of its mean value 
and co-variance matrix is sufficient to fully characterize its properties.  
 
This is a very useful feature, which is widely applied in analysis of linear stochastic 
systems. In such systems, it can be shown that if initial probability density is Gaussian 
then, with progress of time, the probability densities remain Gaussian and therefore the 
process could be characterized by the changes to the mean value and to the covariance. 
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Figure 2: One-dimensional Gaussian probability density function 
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Figure 3: Two-dimensional Gaussian probability density function 
 
2.4. Conditional Probability 
 
Two or more vector random variables, e.g. 1 2 3, ,x x x  can be put together in a larger 
vector 
 

1

2

3

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

G x

x x

x

  (7) 

 
where 1 11 1 2 21 2[ ] , [ ]= =… …T T T T

n mx x x x x x and 3 31 3[ ]= …T T
qx x x . A joint 

probability density function can be defined: 
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1

2joint

3

( ) .ϕ ϕ
⎛ ⎞⎡ ⎤
⎜ ⎟⎢ ⎥= ⎜ ⎟⎢ ⎥
⎜ ⎟⎢ ⎥⎣ ⎦⎝ ⎠

x

xx

x

  (8) 

 
Then the conditional probability density function determines the probability density 
function when some of the random variables are known (e.g. have been measured). 
Assuming that the vector 3x  is known, from Bayes rule one obtains: 
 

1 2 3
3 3

( )
( , )

( )
ϕ

ϕ
ϕ

= joint
cond

x
x x x

x
  (9) 

 
where 3 3( )ϕ x  denotes the probability density function of a vector random variable 3x  
and can be calculated from: 
 

3 3 1 2 3 1 2( ) ( , , )ϕ ϕ
+ +

− −

= ∫ ∫ joint d d
∞ ∞

∞ ∞

x x x x x x  

1 2 3 11 1 21 2( , , ) .ϕ
+ + + +

− − − −

= ∫ ∫ ∫ ∫" " … …joint n md d d d
∞ ∞ ∞ ∞

∞ ∞ ∞ ∞

x x x x x x x (10) 

 
2.5. Conditional Expectation Operator 
 
The conditional expectation of function 1 2( , )g x x  will be obtained if the probability 
density function ( )ϕ x  is replaced by the conditional probability e.g.: 
 

1 2 3 1 2 1 2 3 1 2{ ( , ) } ( , ) ( , ) .ϕ
+ +

− −

= ∫ ∫ condE d d
∞ ∞

∞ ∞

g x x x g x x x x x x x  (11) 

 
Notice that the conditional expected value is a function of 3x . 
 
2.6. Independent Random Vectors 
 
Two random vectors 1x  and 2x  are independent if  
 

1
1 1 2 2

2
( ) ( ) ( ) ( ).ϕ ϕ ϕ ϕ

⎡ ⎤
= =⎢ ⎥

⎣ ⎦
joint

x
x x x

x
  (12) 

 
As an obvious conclusion for independent random vectors: 
 

1 2 1 1( ) ( )ϕ ϕ=cond x x x   (13) 
 
and 
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2 1 2 2( ) ( ).ϕ ϕ=cond x x x   (14) 
 
2.7. Characteristic Function 
 
For a random vector variable x  of dimension n  define a vector s  of dimension n . The 
characteristic function of the random variable x  is the expectation operation for the 
function ( ) exp( ),≡ j sTg x x i.e: 
 

( )( ) exp ( ) .
+

−

= ∫s j s Q d
∞

∞

Φ Tx x x   (15) 

 

Notice that exp( )j sTx  is a scalar function of two vector arguments: x  and s . 
Therefore, the expectation operation produces a scalar function of one vector argument: 
s . 
 
2.7.1. Characteristic Function for Gaussian Probability Density 
 
The characteristic function for Gaussian probability density is given by: 
 

1( ) exp .
2

⎛ ⎞= −⎜ ⎟
⎝ ⎠

T
Gauss s j s s PsΦ Tx   (16) 

 
Substituting the Gaussian probability density function into the equation defining the 
characteristic function yields: 
 

1

1

1 1( ) exp ( ) exp ( ) ( )
2(2 ) det( )

1 1exp ( ) ( )
2(2 ) det( )

1exp .
2

−
−

−
−

⎡ ⎤= − − − =⎢ ⎥⎣ ⎦π

⎛ ⎞= − − − =⎜ ⎟
⎝ ⎠π

⎛ ⎞= −⎜ ⎟
⎝ ⎠

∫

∫

T
Gauss n

T
n

T

s j s P d
P

j s P d
P

j s s Ps

∞

∞

∞

∞

Φ T

T

T

x x x x x x

x x x x x x

x

 (17) 

 
2.8. Characteristic Function for Independent Random Vectors 
 
If characteristic functions of random variables 1x  and 2x are 

1 1( )sΦ x  and 
2 2( )sΦ x , 

respectively, and vectors 1x  and 2x  are independent, then: 
 

1 2

1 2

1
1 1 2 2 1 1 2 2 1 2

2

1 1 1 1 1 2 2 2 2 2 1 2

( ) exp ( ) ( ) ( )

exp( ) ( ) exp( ) ( ) ( ) ( ).

ϕ ϕ

ϕ ϕ

+ +

⎡ ⎤
⎣ ⎦ − −

+ +

− −

⎛ ⎞⎡ ⎤ ⎡ ⎤= = + =⎜ ⎟⎢ ⎥ ⎣ ⎦⎣ ⎦⎝ ⎠

=

∫ ∫

∫ ∫

T T
T T

T T

s
s j s s d d

s

j s d j s d s s

∞ ∞

∞ ∞
∞ ∞

∞ ∞

Φ Φ

Φ Φ

x x x

x x

x x x x x x

x x x x x x
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