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Summary 
 
The article surveys the basic theory of stochastic stability of dynamical systems via the 
stochastic Liapunov function approach. The ideas provide a powerful methodology for 
determining the long-term properties under broad conditions, whether actual 
convergence, insensitivity to perturbations, boundedness or recurrence. Such properties 
are fundamental attributes of well-designed systems, adaptive algorithms, etc. The 
article starts with a quick review of the deterministic theory from the point of view that 
will be needed to understand and guide the basic elements of the stochastic theory. 
Then, the basic results for the stochastic theory are given. This is done for discrete time 
processes to avoid the technicalities of the continuous time theory. However, the 
essential ideas and results are similar. The standard types of convergence and recurrence 
are covered as is the stochastic invariant set theorem. The ideas are illustrated with 
examples drawn from randomly sampled systems, recursive optimization and 
identification theory. The examples serve as a useful vehicle for illustrating the diverse 
applications, as well as for the introduction of the perturbed Liapunov function method, 
which allows treatment of correlated noise. 
 
1. Introduction: The Stochastic Stability Problem 
 
Stability concerns the long-term, qualitative properties of dynamical physical systems. 
Typical questions are whether the paths converge to some limit point or set, or whether 
the paths are bounded or unbounded or are insensitive to perturbations. In the first case, 
we might wish to characterize the limit sets and we might want to know some measure 
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of the rate of convergence. In the second case, one wishes to have good bounds or 
useful characterizations of the paths arbitrarily far into the future, or estimates on the 
rate of divergence, if appropriate. Stability is, perhaps, the quintessential problem of 
control theory; since the main questions traditionally have been concerned with 
potentially destabilizing effects of controls or environmental factors. Stability is often 
the first step to showing that a process is well defined and can be studied over a long 
time interval. 
 
Stability issues arise in numerous applications. In adaptive control theory, one is 
concerned with convergence of the adaptive algorithm; and, this is generally a problem 
in stability, where convergence is measured in terms of an error function. Indeed, 
stability is one of the primary concerns throughout adaptation and learning theory. Once 
stability is shown (for example, that the system errors are bounded), the convergence 
proofs are much simpler. These learning problems are usually stochastic, since the data 
is, and one needs effective methods, which yield useful results in a stochastic 
environment. 
 
Control systems are subject to random time variations or random errors of many types, 
whether in the system itself or in the physical environment in which it operates. The 
system might be subject to random sampling, parameters might drift or age randomly 
with time, or there might be random variations in the forces affecting it, etc. Stability 
issues arise in economics and biological and environmental modeling as well. Many 
economic models are based on adjustment and response due to repeated interaction, 
such as between, buyer and seller. In such cases, the long term behavior (such as, 
convergence, or whether the prices or supplies stay within certain bounds, explode, or 
converge to some limit) is of interest; particularly, when the adjustments in the 
economic activity of concern is based on random data or imperfect information. Further 
applications occur in queueing and in other areas of operations research. 
 
This article will outline typical aspects of the theory and results, from an elementary 
viewpoint, using mostly discrete time systems. The probability theory, which is 
involved in the general continuous time theory, can become quite technical; but, all of 
the main ideas and results carry through and in a similar form. The processes of concern 
will usually be either Markovian or perturbations of Markov processes, although more 
general processes will be dealt with in some of the examples. A vector-valued process 
{Xn} is said to be Markov if, for any set A in its range space, 
 
 1 1{ | , } { | }.n i n nP X A X i n P X A X+ +∈ ≤ = ∈   
 
I.e., given the most recent state, the rest of the past does not provide any more 
information on the future. The process is said to have a time invariant transition 
function, if the right hand side does not depend on n. Markov processes are the natural 
stochastic analog of deterministic, dynamical processes (such as difference or 
differential equations) and are the most popular stochastic models in applications all 
through the physical, biological and social sciences. 
 
Owing to the nature of the stability problem, it can be viewed as a robustness property 
of a system. If the basic model has a certain stability property; then, it is crucial in 
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applications that a wide variety of perturbations of that model have the same or a very 
similar property since the precise nature of the disturbances, whether random or not, 
will rarely be known. The primary methods can deal with such perturbations. Non-
Markovian correlated noise processes are important, particularly as “driving forces” in 
adaptive systems, and will be discussed as well. 
 
2. Stability and Liapunov Functions 
 
A quick review of the classical, Liapunov function method will be given first; since the 
various steps and interpretations motivate the methods for the stochastic case. Consider 
the ordinary differential equation ( ), rx f x x= ∈ , Euclidean r-space, and let f (·) be 
continuous. We wish to know whether x(t) → 0 as t → ∞ for any initial condition x(0), 
and whether the solution stays close to zero for all time if it starts near zero. 
Furthermore, will these properties continue to hold under small perturbations of f (·)? 
Keep in mind that although the smallness of a perturbation might guarantee that the 
solutions would remain close over any finite time interval; it is not guaranteed over the 
infinite time interval. These questions will be examined from the classical Liapunov 
function point of view. 
 
Throughout the article, the function denoted by V(x) will have the following properties; 
and, these properties will not be repeated: V(·) is a continuous, real-valued, nonnegative 
function on r  which goes to infinity as x→ ∞. Also, V(0) = 0 and V(x) > 0 for x ≠ 0. 
Other properties will be assumed from time to time. As used below, such V(·) will also 
be called Liapunov functions. The basic idea is that V(·) plays the role of a generalized 
energy function. If, with this measure of energy, the energy decreases or does not 
increase at each point of any path in an appropriate set, then conclusions of a stability 
nature can be drawn. The situation is analogous in the stochastic case. For positive λ, 
define the set Qλ = {x : V(x) < λ}. 
 
In the present differential equations case, suppose also that V(·) is continuously 
differentiable. The method is as follows. Compute the derivative of V(·) along a 
trajectory of the system, namely, 
 

( ( )) ' ( ( )) ( ( )) ( ( )),x
dV x t V x t f x t k x t

dt
= = −  (1) 

 
where the ' denotes transpose and which defines the continuous function k(·). For some 
λ > 0, let x(0) ∈ Qλ and suppose that k(x) ≥ 0 for x ∈ Qλ. Then, the following (typical 
Liapunov function) analysis holds. Since dV (x(t))/dt ≤ 0 as long as x(t) ∈ Qλ, the entire 
path stays in Qλ for that initial condition. Furthermore, the function V(x(t)) is non-
increasing; hence, it converges to some value V . Since 
 

0

( ( )) ( (0)) ( ( ) ,
t

V x t V x k x s ds− = −∫  (2) 

 
for all t, it follows that 
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0

0 ( ( ))k x s ds
∞

≤ < ∞∫  (3) 

 
for all initial conditions x(0) ∈ Qλ. The function V(x(t)) is said to have a contraction 
property in Qλ. Since x(t) ∈ Qλ for all t, it follows that x(·) is uniformly continuous in t 
which, taken together with Eq. (3), implies that x(t) converges to the set Kλ = {x : x ∈ 
Qλ, k(x) = 0}. If k(x) = 0 implies that x = 0, then x(t) converges to zero and we have the 
classical Liapunov function stability theorem. Furthermore, it can be shown that if the 
path starts near the origin; then, it will not stray far from it before eventually going to 
zero. 
 
In many cases, k(x) = 0 at points x other than zero. Since, asymptotically, the trajectory 
hovers around Kλ and satisfies the differential equation in any case; it can be seen that 
x(t) can only converge to a subset of Kλ which contains the full trajectory of the 
differential equation, starting from any point in it. This result is codified in the well-
known LaSalle invariance theorem, which has an important stochastic analog, and will 
now be described. 
 
A set G is called an invariant set for the ODE: if for each x ∈ G, there is a solution to 
the ODE on the doubly infinite time interval (−∞, ∞), which lies entirely in G and 
satisfies x(0) = x. The invariant set theorem states that if x(0) ∈ Qλ in which k(x) ≥ 0, 
then x(t) converges to the largest invariant set in Kλ. This theorem provides a 
substantial extension of the basic Liapunov stability theorem, and its analog for the 
stochastic problem is of considerable importance there as well. 
 
Consider the following deterministic two dimensional example: 
 

 1 2

2 1 2 ,
x x
x x x
=
= − −

 

  
and set 2 2

1 2( )V x x x= + , the energy. Then 2
2( ) 2 ( )V x x k x= − = − . Thus, k(x) = 0 tells us 

nothing about the component x1, and the classical Liapunov function method cannot be 
used directly to show that x(t) → 0. However, since k(x) = 0 implies that x2 = 0 and 
V(x(t)) is still non-increasing, to find the limit invariant set, we need to find the set of 
points where x2 = 0 and which supports a trajectory on (−∞, ∞). Unless x(t) = 0 for all t, 
the trajectory will eventually have nonzero x1(t). Thus, the origin is the only invariant 
set on which k(x) = 0. Consequently, x(t) → 0. Clearly, the invariant set theorem 
simplifies and extends the basic Liapunov function method. The continuity condition on 
k(·) can be weakened, but care must be exercised. 
 
A Discrete Time Liapunov Function Method 
 

Suppose that the dynamical system is given in discrete time as Xn+1 = f (Xn), for a 
measurable function f (·). Suppose that, for some λ > 0, 
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1( ) ( ) ( ) 0n n nV X V X k X+ − = − ≤  (4) 
 
for Xn ∈ Qλ. Then, if X0 ∈ Qλ, Xn ∈ Qλ for all n and Xn converges to the set Kλ = {x : 
k(x) = 0, x ∈ Qλ}. There is a discrete time analog of the invariant set theorem, so that Xn 
actually converges to the largest invariant set in Kλ. 
 
A major problem in the application of the method is the difficulty of finding suitable 
Liapunov functions, apart from some special but important classes. This is also true for 
the stochastic problem. In some cases, as the above example shows, obvious energy 
functions can be used. In other cases, as in adaptive control theory, there are natural 
“error functions”, which provide useful Liapunov functions. However, even in simple 
cases, where a useful Liapunov function is available, it can be used to study the stability 
under perturbations and time variations. Liapunov functions for deterministic problems 
can be used to study the effects of stochastic perturbations. For such problems, an 
important question is whether a stability property of the deterministic system will carry 
over or be approximable under stochastic perturbations. Then, one does not always need 
the have the Liapunov function in hand. Merely knowledge of its existence is enough, 
and the functions will exist if the system is appropriately stable. 
 
The local “contraction” properties Eqs. (1) or (4) were crucial for the convergence. The 
key to the power of the Liapunov function approach is that purely local properties such 
as the sign of the derivative ' ( ) ( )xV x f x at each x can be used to get global properties of 
the trajectories. Such local contraction properties would occur for only trivial stochastic 
problems, where no matter what the realization of the random variables, there is a 
contraction at each step. However, there are some remarkable results in probability 
theory that allow us to get results that are close to the deterministic ones. 
 
- 
- 
- 
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