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Summary 
 
This chapter presents the basic concepts and theorems of Lyapunov's  method for 
studying the stability of nonlinear systems, including the invariance principle and the 
linearization method. 
 
1. Introduction 
 
Stability theory plays a central role in control theory and engineering. There are 
different kinds of stability problems that arise in the study of dynamical systems (see 
Stability theory, Popov and circle criterion, and Input-output stability). This article is 
concerned with Lyapunov stability. Stability of equilibrium points is defined in Section 
2 for autonomous systems and Lyapunov’s theorem is given.  
 
An extension of the basic theory, known as the invariance principle, is given in Section 
3. For a linear time-invariant system ( ) ( )A=�x t x t , stability of the equilibrium point 

0=x  can be completely characterized by the location of the eigenvalues of .A   This is 
discussed in Section 4. In Section 5, it is shown when and how the stability of an 
equilibrium point can be determined by linearization about that point.  
 
In Section 6, we extend Lyapunov’s method to non-autonomous systems. We define the 
concepts of uniform stability, uniform asymptotic stability, and exponential stability of 
the equilibrium point of a non-autonomous system and give Lyapunov’s method for 
testing them. 
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2. Autonomous Systems 
 
Consider the autonomous system 
 

( )f=�x x   (1) 
 
where :f D R→ n  is a locally Lipschitz map from a domain D R⊂ n  into Rn . Suppose 
∈x D  is an equilibrium point of (1); that is, ( ) 0.f =x  Our goal is to characterize and 

study stability of x .  
 
For convenience, we state all definitions and theorems for the case when the equilibrium 
point is at the origin 0=x . There is no loss of generality in doing so because any 
equilibrium point x  can be shifted to the origin via the change of variables = −y x x.  
 
Definition 1 The equilibrium point 0=x  of (1) is stable if, for each ε>0,  there is 

( )=δ δ ε >0  such that ( ) ( )⇒δ εx x t0 < <  for all ≥t 0;  unstable if not stable; 
asymptotically stable if it is stable and δ can be chosen such that 
( ) ( ) 0.lim =→∞⇒δ tx x t0 <  

 
Let :V D R→  be a continuously differentiable function defined in a domain D R⊂ n  
that contains the origin. The derivative of V  along the trajectories of (1), denoted 
by ( )V� x , is given by   
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If ( )V� x  is negative, V will decrease along the trajectory of (1) passing throughx . A 

function ( )V x  is positive definite if ( )0 0V =  and ( )V x >0  for ≠x 0.  It is positive 

semidefinite if it satisfies the weaker condition ( )V ≥x 0  for ≠x .0  A function ( )V x  is 

negative definite or negative semidefinite  if ( )V− x  is positive definite or positive 
semidefinite, respectively. 
 
Lyapunov’s stability theorem states that the origin is stable if, in a domain D  that 
contains the origin, there is a continuously differentiable positive definite function 
( )V x  so that ( )V� x  is negative semidefinite, and it is asymptotically stable if ( )V� x  is 

negative definite.  When the condition for stability is satisfied, the function V  is called 
a Lyapunov function. The surface ( ) ,V c=x  for some c>0,  is called a Lyapunov 
surface or a level surface. Using Lyapunov surfaces, Figure 1 makes the theorem 
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intuitively clear. It shows Lyapunov surfaces for increasing values of .c  The condition 
0V ≤�  implies that when a trajectory crosses a Lyapunov surface ( ) ,V c=x  it moves 

inside the set ( ){ }V c= ≤Ωc x  and can never come out again. When V� <0,  the 
trajectory moves from one Lyapunov surface to an inner Lyapunov surface with a 
smaller .c  As c  decreases, the Lyapunov surface  ( )V c=x  shrinks to the origin, 
showing that the trajectory approaches the origin as time progresses. 
 

 
 

Figure 1: Level surfaces of a Lyapunov function. 
 
Lyapunov’s theorem can be applied without solving the differential equation (1). On the 
other hand, there is no systematic method for finding Lyapunov functions. In some 
cases, there are natural Lyapunov function candidates like energy functions in electrical 
or mechanical systems. In other cases, it is basically a matter of trial and error. 
 
Example 1 Consider the first-order differential equation ( )= −�x g x  where ( )g x  is 

locally Lipschitz on ( ) ( ), , 0,D a a= − =g 0  and ( ) { }0 .∀ ∈ −xg x x D>0,  Over the 

domain ,D  ( ) ( )V d= ∫
x

x g y y
0

 is continuously differentiable, ( )0 0,V =  and ( )V x >0  

for all ≠x 0.  Thus, ( )V x  is a valid Lyapunov function candidate. To see whether or 

not ( )V x is indeed a Lyapunov function, we calculate its derivative along the 
trajectories of the system. 
 

( ) ( ) ( ) { }0VV ∂
= − = − ∀ −⎡ ⎤⎣ ⎦∂

� ∈x g x g x x D
x

2 <0,  

 
Thus, the origin is asymptotically stable. 
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Example 2 Consider the pendulum equation 
 

, sin , 0a b a b= = − − ≥� �x x x x x1 2 2 1 2 > 0,  
 
and let us study stability of the equilibrium point at the origin. A natural Lyapunov 
function candidate is the energy function ( ) ( ) ( )1 cosV a= −x x x21

1 22+ . Clearly, 

( )0 0V =  and ( )V x  is positive definite over the domain 2− π π.x1< <2  The 

derivative of ( )V x  along the trajectories of the system is given by  
 
( ) sin sin sinV a a a b b= = − − = −� � �x x x x x x x x x x x2 2

1 1 2 2 2 1 2 1 2 2+  
 
Thus, the origin is stable. When 0b =  (no friction), ( ) 0V ≡� x . In this case, we can 
conclude that the origin is not asymptotically stable; for trajectories starting on a 
Lyapunov surface ( )V c=x  remain on the same surface for all future time. When 

( )b V b= −� x x22>0,  is negative semidefinite, but not negative definite because 

( ) 0V =� x  for 0=x2  irrespective of the value of x1 ; that is, ( ) 0V =� x  along the x1 -
axis. Therefore, we can only conclude that the origin is stable. We will see in the next 
section that the origin is asymptotically stable. 
 
This example emphasizes an important feature of Liapunov’s stability theorem; namely, 
the theorem’s conditions are only sufficient.  Failure of a Lyapunov function candidate 
to satisfy the conditions for stability or asymptotic stability does not mean that he 
equilibrium is not stable or asymptotically stable. It only means that such stability 
property cannot be established by using this Lyapunov function candidate. Whether the 
equilibrium point is stable (asymptotically stable) or not can be determined only by 
further investigation. 
 
When the origin is asymptotically stable, we are often interested in determining how far 
from the origin the trajectory can be and still converge to the origin as t  approaches ∞ . 
This gives rise to the definition of the region of attraction (also called region of 
asymptotic stability, domain of attraction, or basin) as the set of all points x0  such that 
the solution of ( ) ( ), 0 ,f= = =�x x x x0 tends to zero at ∞→t . Finding the exact region 
of attraction analytically might be difficult or even impossible. However, Lyapunov 
functions can be used to estimate the region of attraction, that is, to find sets contained 
in the region of attraction. If there is a Lyapunov function that satisfies the conditions of 
asymptotic stability over a domain ,D  and if ( ){ }V c= ≤Ωc x  is bounded and contained 

in ,D  then every trajectory starting in Ωc remains in Ωc  and approaches the origin 

as ∞→t . Thus, Ωc  is an estimate of the region of attraction. This estimate, however, 
may be conservative; that is, it may be much smaller that the actual region of attraction. 
The origin is globally asymptotically stable if the region of attraction is the whole space 

.Rn  The Barbashin-Krasovskii theorem states that the origin is globally asymptotically 
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stable if ( )V x is positive definite and V� is negative definite for all R∈ nx and if, in 

addition, ( )V x is radially unbounded; that is, ( )V ∞→x as ∞→x .  The radial 
unboundedness condition guarantees that the set Ωc  will be bounded for any c>0;  

hence, any initial state can be included in Ωc  by choosing c  large enough. 
 
- 
- 
- 
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