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Summary 
 
This chapter reviews a central issue in modern control system design, the zero or 
internal dynamics. Current techniques in both linear and nonlinear control often 
emphasize explicit utilization of the plant model in the control system design with some 
form of model inversion. This frequently admits tunable controller parameters with the 
important property of explicit physical significance. The subsystem generated by 
nulling the system outputs is called the zero dynamics, which captures the nature of this 
form of invertibility. Model inversion can be hindered by unstable zero dynamics, 
leading to a nonminimum phase (NMP) system. The stability of this key subsystem 
governs both the feasibility of some controller designs, and provides a baseline for 
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minimum achievable closed-loop performance. Zero dynamics are the nonlinear 
generalization of the properties of zeros in a linear plant model, and must be assessed 
for each nonlinear control system. Some typical formulations of zero dynamics arising 
from different viewpoints, or methods of controller design, are covered to provide a feel 
for the nature of the problem. There are fairly general analytic solutions for many 
classes of nonlinear minimum phase systems. However, many important technological 
systems, including bioreactors and air or land vehicles, fall into the class of nonlinear 
NMP systems. These are generally more difficult for controller design, and rarely 
possess completely general solutions. A brief review of important model-based 
nonlinear control structures is included since their design is intimately connected with 
the zero dynamics of the system. Some interesting NMP systems are discussed, with a 
few approximate-analytic methods of design, to highlight the difficulties that stem from 
the existence of unstable zero dynamics.   
 
1. Introduction 
 
Modern technological systems, so ubiquitous in society today, continue to expand in 
their usages and requirements. Virtually all such systems possess degrees of nonlinear 
behavior. To extract the best performance out of a given system, often by maximizing 
energy efficiency while minimizing losses and wastage, sophisticated model-based 
nonlinear controllers (MB-NLC) are increasingly used, such as exact/feedback 
linearization control (ELC), backstepping, and differential flatness-based control, 
among others. They tend to have the advantage of being derived from explicit physical 
laws. Such controllers inherit parameters related to the physical model, a desirable 
design feature. They are found today in diverse technologies including biotechnology, 
aerospace, chemical processes, mechatronics, and power systems.  
 
The generic design of most of the MB-NLC’s involves some form of model inversion. 
The feasibility of this inversion is largely determined by the stability properties of a 
special dynamical subsystem generated by nulling the relevant outputs of the control 
system, the zero dynamics. If the zero dynamics system is stable, the system is said to 
be minimum phase (MP). Otherwise it is said to be nonminimum phase (NMP).  
 
Analytic controller synthesis algorithms such as the ELC and others mentioned above 
tend to assume that the system is minimum phase. There exist important results 
indicating that the system being MP is a necessary condition to design analytic control 
laws that achieve high performance, namely asymptotic or even exact tracking, for an 
important class of systems. Philosophically, the negation of this condition by NMP 
systems suggests approximate or specific solutions to the controller design problem, 
some of which will be demonstrated here. NMP systems may impose basal performance 
limitations, which is evident if a similar “ideal” MP system can be compared. Many 
technologically significant systems turn out to be NMP, and accordingly pose a 
significant obstacle to effective controller design.  
 
Stability of the zero dynamics is a key issue in the design for any control law synthesis 
for a nonlinear controlled system (NLCS), and must always be explicitly checked before 
commencing controller design. Unstable zero dynamics, in the form of NMP systems, 
today continue to constitute an open control systems research problem, and has led to 
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several new innovative control laws. Some of these are covered briefly to indicate the 
evolving state of the art, and to demonstrate the style of approaches to this broad-based 
and important set of systems.  
 
2. Nonlinear Control System Paradigms 
 
There is a range of powerful methods available with various modifications, both 
generalizations and specializations, available for designing model-based nonlinear 
controllers (MB-NLC). A detailed exposition is both beyond the scope of this chapter, 
as well as too voluminous. In place of that, some of the more important methods, 
particularly exact/feedback linearizing control (ELC), backstepping, differential 
flatness-based control (DFC), and variable structure control (VSC) will be described 
briefly with an emphasis on design (rather than analytic properties). These methods 
share some common features. All are function topologically oriented, finite dimensional 
(ordinary differential or differential-algebraic model-based), relying on possibly 
iterative and at least partially linearizing geometric transformations rooted in differential 
geometry or algebra.  
 
In this chapter it will be assumed that there is full access to state information. For ease 
of notation and simplicity, all systems will be assumed to be single-input/single-output 
(SISO), unless otherwise mentioned. Short sketches of some relevant NLCS design 
paradigms are covered here. Each method has a definite and strong dependence on the 
behavior of the zero dynamics subsystem. The connection to zero dynamics is 
mentioned only briefly in this section, and will be expanded upon appropriately in the 
next section.  
 
A fairly general SISO nonlinear control system (NLCS) n -dimensional model can be 
given by  
 

( )
( ),

x f x u
y h x

= ,
=

                                                                                             (1) 

 
where nx∈ ⊂ ℜX  is the state, 1u∈ℜ  the control input, and 1y∈ℜ  is the (selected) 
system output. X  denotes the state manifold. Typically, the system descriptor 
functions are assumed to be sufficiently smooth, with the state 
map 1( )n nf C∈ ℜ ×ℜ ,ℜ∞ , and the output map 1( )nh C∈ ℜ ,ℜ∞ .  
 
2.1. Exact / Feedback Linearizing Control 
 
Many systems can be described or approximated well by an important substructure of 
the general NLCS of Eq. (1) called an input-affine form  
 

( ) ( ) ( )
( ).

x f x g x u t
y h x

= +
=

                                                                              (2) 

 
In this sketch we emphasize the input-output linearization version of ELC, which has 
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less stringent analytic requirements compared to the closely related but more difficult to 
calculate state space linearization version (which includes the analytical solution of a 
system of partial differential equations). With similar functional assumptions to the 
general NLCS (1), and additional restrictions particularly certain involutivity 
conditions, ELC design is implementable. Without loss of generality, assume 0x =  is 
an equilibrium point of Eq. (2), i.e. (0) 0f = . 
  
Consider an input-affine NLCS of the form (2). The relative degree of the system is said 
to be r n≤  at a point ox  if  
 

1

( ) 0 1 ( )

( ) 0,

k o
g f

r o
g f

L L h x k r x B x

L L h x−

= , < − ,∀ ∈

≠
 

 
where  

1
1

( )
( ) ( ) ( ) ( ) ( ( ))

( )
( ) ( ) ( ( ))
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L h x
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∂ ∂

∂
= =
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denote the appropriate system Lie derivative operations used extensively in ELC.  
Let system (2) have a relative degree r n≤  in a certain neighborhood 0X  of 0x = . 

Consider a stable linear differential operator ( )ργ  of degree r  ( d
dtρ ≡ )  

1
1( ) 1r r

r r …ρ ρ ρ −
−γ = γ + γ + + .                                                                    (3) 

 
Then the system output can be written as  

( ) ( ) ( ) ( ) ( )y t b x a x u tργ = +                                                                           (4) 
 
with ( ) 0a x ≠ , ( )b x  suitable ELC-derived functions which arise from appropriate state 
variable coordinate transformations of the form 
 

(1) ( 1)
1( ) ( ( ) ( ) ( ) ( ) ( ))r

r nz x h x h x … h x x … xφ φ−
+= Φ = , , , , , , ,                            (5) 

 
where ( ) ( )ih x  denotes the thi  time derivative of the output map ( ( ))h x t , and has a 
special functional form due to the structure of system (2). These functions are intimately 
related to the system zero dynamics. Relevant functional specifications are given 
separately in Section 3.1. The ELC control input is then given by  
 

( ) ( )( )
( )

t b xu t
a x

υ∗ −
= ,                                                                                      (6) 

 
which transforms the original nonlinear system into a linear one:  
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( ) ( ) ( )y t tρ υ∗γ = ,                                                                                          (7) 
 
where ( )tυ∗  is an external signal, usually some form of linear control given by  
 

( ) [ ( )]t L e tυ∗ = ,                                                                                              (8) 
 
where L  is a linear operator representing the control law, and ( ) ( ) ( )Re t y t y t= −  is the 
reference model/trajectory tracking error. Feasibility of ELC design implicitly ensures 
stability, in the sense of a system that is stabilizable by external linear control.  
ELC structure and design represent a key point of departure from linear systems, and 
provide a sound basis for constructing extended and generalized NLCS models and 
control designs.  
 
2.2. Backstepping Control 
 
Backstepping is an iterative analytic controller design procedure for systems with 
models of special structure, similar to the form of Eq. (2). It can be used on such 
systems to find an output z  that has a passivity property, i.e. demonstrates a relative 
degree 1, and allows stable system inversion (and hence zero dynamics). A system with 
input ( )u t  and output ( )z t  is passive if there exists a nonnegative storage function 

( ( ) )U x t t,  with the property  
 

0
( ) ( ) ( ( ) ) ( (0) 0)

T
u t z t dt U x T T U x≥ , − , .∫                                                       (9) 

 
In practice passivity is a very strong requirement. An appropriate passive system can be 
rendered asymptotically stable by the simple output feedback ( ) ( )u t z t= − . The 
recursive backstepping design generates a passive system given a system in a specific 
form.  
 
Some manipulations and simplifications can often allow the state description to be 
rewritten in a special input-linear form, convenient for backstepping design. Let ix  
denote the first i  components of x . A vector or matrix function φ  is said to be lower 

triangular dependent (strictly) on x  if the thi  row is a function at most of ix  1( )ix − . 
Consider the system  
 

( )x Fx f x gu= + +  ,                                                                                   (10) 
 
where ( )f x  is lower triangular dependent on x , F  is a zero matrix save for 1’s on the 
upper diagonal, and g  is a zero vector save for the last entry being 1. It is said to be in 
“strict feedback form”. Somewhat analogous to ELC design, the backstepping algorithm 
starts by defining an invertible coordinate transformation generating an auxiliary state 
variable ( )zz x= Φ  of the affine form  
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( )Tz x F xφ= +                                                                                            (11) 
 
and an auxiliary input ( )x uυυ = Φ ,  of the affine form  

( )Tu g xυ φ= + ,                                                                                          (12) 
 
where φ  is lower triangular dependent on x , and to be determined. This generates a 
transformed system with the same structure as Eq. (10)  
 

( )z Fz z gφ υ= + +                                                                                      (13) 
 
and leads to the backstepping transformation function  
 

( ) ( ) ( ) ( ( )) ( ( ))T T
xx f x F x Fx f x x F xφ φ φ φ= + ∇ + − +⎡ ⎤⎣ ⎦ ,                          (14) 

 
which depends on the selection of an appropriate lower triangular dependent structure 
for ( )zφ . Since φ  is lower triangular dependent on x , Eq. (14) is used to construct it 
row by row.  
 
This yields the core backstepping design for strict feedback systems. It is a purely 
structural design, which does not necessarily insure stability. Stability can be enforced 
by selecting  
 

( ) ( ( ))Tz F C z t zφ = − + ,                                                                           (15) 
 
with ( )C z t,  lower triangular dependent on z  and positive semidefinite but otherwise 

arbitrary. Selection of the Lyapunov function 1
2( ) TV z z z=  then demonstrates stability 

for this system.  
 
2.3. Differentially Flat Control 
 
Consider the general NLCS of Eq. (1) in multi-input/multi-output (MIMO) form with 

mu∈ℜ , where (0 0) 0f , =  and  
 

rank (0 0)f m
u
∂⎡ ⎤, = .⎢ ⎥∂⎣ ⎦

 

 
Many such systems are expressible in differentially flat form, i.e. with some outputs 
such that states and inputs can be expressed in terms of those outputs and a finite 
number of their derivatives.  
 
Flatness is not a generic property of a control system. Requirements for a differentially 
flat controller (DFC) design are summarized in the model 
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( )

( )

( )

( , )
( )

( , )

( )

( )

Y

Z

X

U

x f x u
y h x

z h x u

x z

u z

γ

α

β

ψ

ψ

=
=

=

=

=

                                                                                          (16) 

 
for some maps Xψ  and Uψ . Here y  are the tracking outputs, and z  the flat outputs. 
The notation  
  

( ) ( )( )p p … pp δ δ= , , ,                                                                                  (17) 
 
denotes a system flag which stacks some system input, or output, and their derivatives 
up to order δ . This is equivalent to finding a regular endogenous dynamic feedback 
compensator of the form  
  

( , , )

( )( ),q m

w a x w

u b x w w

υ

υ υ

=

= , , ∈ℜ , ∈ℜ
                                                           (18) 

 
where (0 0 0) 0a , , =  and (0 0 0) 0b , , = . Regularity implies the invertibility of (18) with 
input υ  and output u ; and a diffeomorphism  
  

( )( )n qx wξ ξ += Φ , ∈ℜ ,                                                                                (19) 
 
which transform the dynamic feedback system of Eqs. (18)-(19) into a controllable 
linear system of the form F Gξ ξ υ= + . An additional linear invertible transformation 
(and at most a static state feedback) converts this linear system into the Brunovsky 
canonical form  
  

1( )
11

( )m
m m

z v

z v

ν

ν

=

=

                                                                                                      (20) 

 
where 1 m…, ,v v  are the controllability indices. Then 1( 1) ( 1)

1 1( )mv v
m mZ z … z … z … z− −= , , , , , ,  

is another basis for ξ -space, or there exists an invertible ( ) ( )n q n q+ × +  matrix T  
such that Z Tξ= . Therefore ( )Z T x w= Φ ,  and invertibility implies  
  

1 1( ) ( )x w T Z− −, = Φ .                                                                                  (21) 
 

1( )mz z … z= , ,  is precisely the desired flat output. From Eqs. (18), (20) and (21), where 
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1 1( ( ) )u b T Z υ− −= Φ ,  and ( )iv
i iv z= , x  and u  can be expressed as analytic functions of 

this flat output and a finite number of its derivatives namely the appropriate maps Xψ  
and Uψ  as shown in Eq. (16). The dynamic feedback is endogenous if and only if the 
converse also holds, namely that the flat output z  can be expressed as an analytic 
function of x , u  and a finite number of its derivatives, or  
  

( )( )Zz h x u γ= ,                                                                                            (22) 
 
as in Eq. (16). Eqs. (21) and (22) imply that w  can be expressed as a function of 

( )( )x u κ,  for some integer κ , hence the dynamic extension is endogenous.  
 
A key benefit of flat systems is the recovery of system and input information without 
explicit integration of the system equations. DFC design differs somewhat from the 
methods described above in Sections 2.1 and 2.2. First, a set of flat outputs has to be 
verified by the designer. Unlike the constructive topological methods of backstepping 
and ELC, currently there are no well defined checkability conditions to find flat outputs, 
a current limitation of this powerful technique.  
 
Given a verified flat output, however, produces several desirable features for DFC 
design. A flat system is equivalent to a linear system, via at most a dynamic feedback. 
This feature bears a strong conceptual resemblance to the ELC structure, with the 
advantage of allowing stabilization across an entire trajectory, rather than in the local 
region of an equilibrium point. A unique and powerful feature of flat systems is the 
generation of an explicit two-degree-of-freedom (2-dof) trajectory-driven controller 
design. Given a predetermined reference output trajectory Ry , an open-loop 
feedforward control Ru  can be generated via the state-input/flat flag maps Xψ  and Uψ  
given in Eq. (16). If the model is sufficiently good, and there are no significant noise 
and disturbance signals, the trajectory will be tracked exactly.  
 
Outline of a feedforward-feedback 2-dof DFC design To compensate for noise, 
disturbances and model mismatch, an auxiliary linear feedback compensator is designed 
as follows. Let the system vector ( ( ) ( ) ( ))R R Rx t y t u t, ,  be an instance of the feedforward 
reference system trajectory ( )R RRx uy, ,  generated as above with ( ( ) ( ) ( ))x t y t u t, ,  

instantaneous values of the system vector. In general ( ) ( )Ru t u t≠ . The instantaneous 
actual and reference flat outputs are reconstructed as  
  

( )

( )
( ) ( ( ) ( ))

( ) ( ( ) ( ))
Z

R Z R R

z t h x t u t

z t h x t u t

γ

γ

= ,

= , .
                                                                (23) 

 
Define ( ) ( ) ( )Z Re t z t z t= −  as the flat output tracking error. Then in analogy to the ELC 
design procedure, choose  
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( ) [ ( )] 1i i Z it L e t i … mυ ,= ; = , , ,                                                                    (24) 
 
where 1{ }m

i iL =  are SISO linear operators representing linearized feedback control laws 
for the decoupled linear system (20). Eq. (20) is used to construct the new flat output 

( )z t . Finally the overall control input is calculated using the map (16)  
  

( )( )( ) ( ) ( )U Zu t z t e tβψ= ; ,                                                                         (25) 

 
which can be expressed as a sum of feedback and feedforward controllers or 

fb ffu u u= + . Here ff Ru u= , so that the effective feedback correction is fb Ru u u= − . 

In the case of perfect tracking, 0Ze = , so that Ru u≡ . This formulation requires the 
number of selected flat outputs to be the same as the number of inputs. When the flat 
and tracking outputs do not coincide, a zero dynamics is generated. The implications of 
this are discussed further in Section 4.5.  
 
- 
- 
- 
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