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Summary 
 
This chapter gives an overview on some state-of-the-art approaches of Lyapunov design 
by dividing systems into several distinct classes, though in general there is no 
systematic procedure in choosing a suitable Lyapunov function candidate for controller 
design to guarantee the closed-loop stability for a given nonlinear system. After a brief 
introduction and historic review, this chapter sequentially presents (i) the basic concepts 
of Lyapunov stability and control Lyapunov functions, (ii) Lyapunov equations and 
model reference adaptive control based on Lyapunov design for matched systems, (iii) 
Lyapunov redesign, adaptive redesign and robust design for matched systems, (iv) 
adaptive backstepping design for unmatched nonlinear systems, (v) Lyapunov design by 
exploiting physical properties for special classes of systems, and (vi) design flexibilities 
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and considerations in actual design.   
 
1. Introduction 
 
Lyapunov design has been a primary tool for nonlinear control system design, stability 
and performance analysis since its introduction in 1892. The basic idea is to design a 
feedback control law that renders the derivative of a specified Lyapunov function 
candidate negative definite or negative semi-definite. Lyapunov’s direct method is a 
mathematical interpretation of the physical property that if a system’s total energy is 
dissipating, then the states of the system will ultimately reach an equilibrium point. The 
basic idea behind the method is that, if there exists a kind of continuous scalar “energy” 
function such that this “energy” diminishes along the system’s trajectory, then the 
system is said to be asymptotically stable. Since there is no need to solve the solution of 
the differential equations governing the system in determining its stability, it is usually 
referred to as the direct method (see Lyapunov Stability).  
 
Although Lyapunov’s direct method is efficient for stability analysis, it is of restricted 
applicability due to the difficulty in selecting a Lyapunov function. The situation is 
different when facing the controller design problem, where the control has not been 
specified, and the system under consideration is undetermined. Lyapunov functions 
have been effectively utilized in the synthesis of control systems. The basic idea is that, 
by first choosing a Lyapunov function candidate, a feedback control law can be 
specified such that it renders the derivative of the specified Lyapunov function 
candidate negative definite, or negative semi-definite when invariance principle can be 
used to prove asymptotic stability.  
 
This way of designing control is called Lyapunov design. Lyapunov design depends on 
the selection of Lyapunov function candidate. Though the result is sufficient, it is a 
difficult problem to find a Lyapunov function (LF) satisfying the requirements of 
Lyapunov design. Fortunately, during the past several decades, many effective control 
design approaches have been developed for different classes of linear and nonlinear 
systems based on the basic ideas of Lyapunov design. Lyapunov functions are additive, 
like energy, i.e., Lyapunov functions for combinations of subsystems may be derived by 
adding the Lyapunov functions of the subsystems. This point can be seen clearly in the 
adaptive control design and backstepping design in this chapter.  
 
Though Lyapunov design is a very powerful tool for control system design, stability and 
performance analysis, the construction of a Lyapunov function is not easy for general 
nonlinear systems, and it is usually a trial-and-error process owing to the lack of 
systematic methods. Different choices of Lyapunov functions may result in different 
control structures and control performance.  
 
Past experience shows that a good design of Lyapunov function should fully utilize the 
property of the studied systems. Lyapunov design is used in many contexts, such as 
dynamic feedback, output-feedback, estimation of region of attraction, and adaptive 
control, among others. The chapter is not meant to be comprehensive but to serve as an 
introduction to the state-of-the-art of full-state feedback design based on Lyapunov 
techniques for several typical classes of autonomous systems.  
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Intensive research in adaptive control was first motivated by the design of autopilots for 
high performance aircraft in the early 1950s. Because their dynamics change drastically 
when they fly from one operating point to another, constant gain feedback control 
cannot handle it effectively. The lack of stability theory and one disastrous flight test led 
to the diminished interest in adaptive control in the late 1950s. The 1960s saw many 
advances in control theory and adaptive control in particular. Simultaneous 
development in computers and electronics made the implementation of complex 
controllers possible, and interest in adaptive control and its applications was renewed in 
the 1970s with several breakthrough results made.  
 
The studies of non-robust behavior of adaptive control subject to small disturbance and 
unmodeled dynamics in 1979 and the early 1980s, led to better understanding of the 
instability mechanisms and the design of robust adaptive control in the later 1980s 
though it was very controversial initially. They were all systems satisfying the matching 
condition. In the late 1980s and early 1990s, the matching condition was relaxed to the 
extended matching condition, which for one period was regarded as the frontier that 
could not be crossed by Lyapunov design, and then further relaxed to the strict-feedback 
systems with general unmatched uncertainties through backstepping design, which is the 
state-of-the-art of adaptive control.  
 
This chapter gives an overview of the state-of-the-art approaches of Lyapunov design 
and ways of choosing Lyapunov functions in the area of full-state adaptive control. 
Section 2 presents the concepts of Lyapunov stability analysis and control Lyapunov 
functions. In Section 3, Lyapunov functions for linear time invariant systems are 
presented first, then the results are utilized to solve Model Reference Adaptive Control 
(MRAC) problems for classes of linear and nonlinear systems which can be transformed 
to systems having stable linear portion.  
 
For this class of problems, the choice of Lyapunov functions is systematic and 
controller design is standard. In Section 4, after the presentation of Lyapunov Redesign, 
Adaptive Lyapunov Redesign, Robust Lyapunov Redesign for a class of matched 
systems, backstepping controller design is discussed for unmatched nonlinear systems. 
By exploiting the physical properties of the systems under study, Section 5 shows that 
different choices of Lyapunov functions and better controllers are possible. Section 6 
discusses the design flexibilities and considerations in actual applications of Lyapunov 
design, and further research work.  
 
2. Control Lyapunov Function 
 
Though Lyapunov’s method applies to nonautonomous systems ( )t= ,x f x , for clarity 
and simplicity, we shall restrain our discussion to time-invariant nonlinear systems of 
the form  
 

( )=x f x , (1) 
 
where nR∈x , and ( ) n nR R: →f x  is continuous. The basic idea of Lyapunov direct 
method consists of (i) choosing a radially unbounded positive definite Lyapunov 
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function candidate ( )V x , and (ii) evaluating its derivative ( )V x  along system dynamics 
(1) and checking its negativeness for stability analysis.  
 
Lyapunov design refers to the synthesis of control laws for some desired closed-loop 
stability properties using Lyapunov functions for nonlinear control systems  
 

( )= ,x f x u ,         (2) 
 
where nR∈x  is the state, mR∈u  is the control input, and ( ),f x u  is locally Lipschitz 
on ( ),x u , and (0 0) 0, =f .  
 
The usefulness of Lyapunov direct method for feedback control design ( )u x  can be 
seen as follows: Substituting ( )=u u x  into (2), we have the autonomous closed-loop 
dynamics ( ( ))= ,x f x u x  and Lyapunov direct method can then be used for stability 
analysis.  
 
In actual applications, Lyapunov design can be conceptually divided into two steps:  
 
(a) choose a candidate Lyapunov function V  for the system, and  
(b) design a controller which renders its derivative V  negative.  
 
Sometimes, it may be more advantageous to reverse the order of operation, i.e., design a 
controller that is most likely to be able to stabilize the closed-loop system first by 
examining the properties of the system, and then choose a Lyapunov function candidate 
V  for the closed-loop system to show that it is indeed a Lyapunov function. Lyapunov 
design is sufficient. Stabilizing controllers are obtained if the processes succeed. If the 
attempts fail, no conclusion can be drawn on the existence of a stabilizing controller.  
 
Let function ( )V x  be a Lyapunov function candidate. Thus, the task is to search for 

( )u x  to guarantee that, for all nR∈x , the time derivative of ( )V x  along system (2) 
satisfy  
 

( )( ) ( ( )) ( )VV W∂
= , ≤ −

∂
xx f x u x x

x
, (3) 

 
where ( )W x  is a positive definite function. For affine nonlinear systems of the form  
 

( ) ( ) ( )= + , =x f x g x u f 0 0        (4) 
 
the inequality (3) becomes  
 

( ) ( ) ( ) ( )V V W∂ ∂
+ ≤ −

∂ ∂
f x g x u x x

x x
.      (5) 

 
In general, this is a difficult task. A system for which a good choice of ( )V x  and ( )W x  
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exists is said to possess a control Lyapunov function. A smooth positive definite and 
radially unbounded function ( ) nV R R+: →x  is called a Control Lyapunov Function 
(CLF) for (2) if  
 

( )inf { ( )} 0
mR

V
∈

∂
, < ,∀ ≠

∂u

x f x u x 0
x

.      (6) 

 
If ( )V x  is a CLF for affine nonlinear system (4), then a particular stabilizing control 
law, ( )u x , smooth for all ≠x 0 , is given by the Artstein and Sontag’s universal 
controller  
 

2 4( ) ( ( )) ( ( ))
( ) 0

( )( )

0 ( ) 0

V V V

V
V

V

∂ ∂ ∂
∂ ∂ ∂

∂
∂

⎧ + + ∂⎪− , ≠⎪ ∂= ⎨
⎪ ∂

, =⎪
∂⎩

x x x

x

f x f x g x
g x

xg xu x

g x
x

  (7) 

 
The steps of Lyapunov design and concept of “Control Lyapunov Function” are used 
for systems with controls to differentiate the classical term “Lyapunov function” for 
systems without controls. As a design tool for general nonlinear systems, the main 
deficiency of the CLF concept is that a CLF is unknown. The task of finding an 
appropriate CLF may be as complex as that of designing a stabilizing feedback law. 
However, for several important classes of nonlinear systems, these two tasks can be 
solved simultaneously.  
 
When ( )V x  is only negative semidefinite, asymptotic stability cannot be concluded 
from Lyapunov function method directly. However, if =x 0  is shown to be the only 
solution for ( ) 0V =x , then asymptotic stability can still be drawn by evoking LaSalle’s 
Invariance Principle, Invariant Set Theorem, which basically states that, if ( ) 0V ≤x  of a 
chosen Lyapunov function candidate ( )V x , then all solutions asymptotically converge 
to the largest invariant set in the set { ( ) 0}V| =x x  as t →∞ . In fact, this approach has 
been frequently used in the proof of asymptotic stability of a closed-loop system.  
 
Lemma 2.1 [Barbalat] Consider the function ( )t R Rφ +: → . If ( )tφ  is uniformly 

continuous and 
0

lim ( )
t

t dφ τ τ→∞ ∫  exists and is finite, then lim ( ) 0t tφ→∞ = .   

 
Theorem 2.1 [LaSalle]  Let (a) Ω  be a positively invariant set of ( )=x f x , (b) 

( )V R+:Ω→x be a continuously differentiable function such that ( ) 0V ≤ ,∀ ∈Ωx x , and 
(c) { ( ) 0}E V= ∈Ω | =x x , and M  be the largest invariant set contained in E . Then, 
every bounded solution ( )tx  starting in Ω  converges to M  as t →∞ .  
 
To show that a variable indeed converges to zero, Barbalat’s Lemma is frequently used. 
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If Ω  is the whole space nR , then the above local Invariant Set Theorem becomes the 
global one. To prove the asymptotic stability of the system, we only need to show that 
no solution other than ( ) 0t ≡x  can stay forever in E .  
 
It should be noted that there may exist many Lyapunov functions for a given nonlinear 
system. Specific choices of Lyapunov functions may yield better, cleaner controllers 
than others. Usually, Lyapunov functions are chosen as quadratic form due to its 
elegancy of mathematical treatment. However, it is not exclusive. Other forms have also 
been used in the literature, such as energy-based Lyapunov functions, integral-type 
Lyapunov functions, which have been applied in the design of controllers for classes of 
uncertain nonlinear systems.  
 
3. Lyapunov Design via Lyapunov Equation 
 
Model Reference Adaptive Control (MRAC) was originally proposed to solve the 
problem in which the design specifications are given by a reference model, and the 
parameters of the controller are adjusted by an adaptation mechanism/law such that the 
closed-loop dynamics of the system are the same as the reference model which gives the 
desired response to a command signal. In solving this class of problems, the Lyapunov 
equation plays a very important role in choosing the Lyapunov function and deriving 
the feedback control and adaptation mechanism.  
 
In fact, the construction of Lyapunov functions is systematic and straightforward for the 
class of systems which can be transformed into systems with two portions: (i) a stable 
linear portion so that linear stability results can be directly applied, and (ii) matched 
nonlinear portion which can be handled using different techniques such as adaptive or 
robust control techniques in different situations.  
 
Thus, MRAC can also be viewed as Lyapunov design based on Lyapunov equations. To 
explain the concepts clearly, Lyapunov equation and Lyapunov stability analysis are 
firstly presented for linear time-invariant systems, then adaptive control design for 
classes of unknown linear time invariant systems and unknown nonlinear systems is 
presented by utilizing Lyapunov equation.  
 
3.1. Lyapunov Equation 
 
Though linear systems are well understood, it is interesting to look at them in the 
Lyapunov language, and provide a basis of Lyapunov design for systems having linear 
portions. For simplicity, consider the following simple controllable Linear Time 
Invariant (LTI) systems described by  
 

u= +x Ax b , (8) 
 
where nR∈x , and u R∈  are the states, and control variable, respectively, n nR ×∈A  and 

nR∈b . It is well known that there is always a global quadratic LF, and the stabilizing 
controller can be obtained constructively. Let the state feedback control be  
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u = −kx          (9) 
 
the resulting closed-loop system will be of the form  
 

m m= , = −x A x A A bk .       (10) 
 
From the linear system theory, there are many ways to design k  for a desirable stable 
closed-loop system. The most intuitive and direct one might be the pole-placement 
method. In the context of this chapter, we shall look at the problem in the sense of 
Lyapunov design. Not surprisingly, Lyapunov functions can be systematically found to 
describe stable linear systems owing to the following theorem.  
 
Theorem 3.1  The LTI system m=x A x  is asymptotically stable if and only if, given any 
symmetric positive-definite matrix Q , there exists a symmetric positive-definite matrix 
P , which is the unique solution of the so-called Lyapunov equation  
 

T
m m+ = −PA A P Q .        (11) 

 
For such a solution, the positive definite quadratic function of the form  
 

( ) TV =x x Px          (12) 
 
is a LF for the closed-loop system (10), since  
 

( ) 0 0TV = − < , ∀ ≠x x Qx x .       (13) 
 
Another method to design k  is the well known optimal linear quadratic (LQ) design 
method. To investigate the problem in the context of CLF, consider the following 
Lyapunov function candidate for (8)  
 

TV = x Px ,         (14) 
 
where 0T= >P P . For P  to define a CLF (6), the following inequality should hold  
 
inf{ } 0T T T T T T
u R

u u
∈

+ + + < ∀ ≠x A Px x PAx b Px x Pb x 0 ,   (15) 

 
which implies that ( )u x  should take the form that ( ) Tu γ= −x b Px  with 0γ >  (the 

corresponding linear feedback gain Tγ=k b P ). Thus, P defines a CLF if  
 
inf { 2 } 0T T

Rγ
γ

∈
+ − <A P PA Pbb P .      (16) 

 
Such a P  can always be found through the solution of algebraic Riccati equation  
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2 0T Tγ+ + − =A P PA Q Pbb P ,      (17) 
 
which is known to solve the optimal linear quadratic (LQ) state design which minimizes 

the cost function 21
20

[ ]TJ u dtγ
∞

= +∫ x Qx  and subject to the dynamic constraints 

imposed by (8) (see Optimal Linear Quadratic Control (LQ)). Equation (17) guarantees 
that TV = −x Qx , and in turn asymptotic stability of the closed-loop systems.  
 
The results are readily available for multi-input-multi-output (MIMO) systems. 
Techniques in dealing with linear systems in state space are well established. (see 
Classical Design Methods for Continuous LTI-Systems, Design of State Space 
Controllers (Pole Placement) for SISO Systems, Pole Placement Control, Optimal 
Linear Quadratic Control (LQ)).  
 
3.2. MRAC for Linear Time Invariant Systems 
 
To illustrate the basic steps in solving MRAC for linear time invariant systems, consider 
the following LTI plant described by the state-space model  
 

g u= +x Ax b , (18) 
 
where nR∈x ; u R∈  are the states and input respectively, n nR ×∈A  and nR∈b  are in 
the controller canonical form as  
 

1 2

0 1 0 0

0 0 1 0
1na a a

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

⎡ ⎤
⎢ ⎥
⎢ ⎥= , =
⎢ ⎥
⎢ ⎥− − − ⎣ ⎦

A b       (19) 

 
with unknown constants 1ia i n, = , , , and control input gain 0g >  is an unknown 
constant. The objective is to drive x  to follow some desired reference trajectory 

n
m R∈x  and guarantee closed-loop stability. Let the reference trajectory mx  be 

generated from a reference model specified by the LTI system  
 

m m m mg r= +A x bx ,        (20) 
 
where r R∈  is a bounded reference input, n n

m R ×∈A  is a stable matrix given by  
 

1 2

0 1 0

0 0 1m

m mnma a a

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

=

− − −

A       (21) 
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with 1mia i n, = , , , chosen such that 1
1

n n
mn ms a s a−+ + +  is a Hurwitz polynomial. 

The reference model and input r  are chosen such that ( )m tx  represents a desired 
trajectory that x  has to follow, i.e., m→x x as t →∞ .  
 
Consider a general linear control law of the form  
 

( ) ( )ru t k t r= +k x ,        (22) 
 
where k  and rk  may be chosen freely. The closed-loop system then becomes  
 

( ) rg gk r= + +x A bk x b .       (23) 
 
It is clear that there exist constant parameters ∗k  and rk∗  such that the matching 
conditions  
 

i i mi r ma gk a gk g∗ ∗+ = , =        (24) 
 
hold, i.e., equations (20) and (23) are equivalent. Since ia  and g  are unknown, so are 
∗k  and rk∗ , which means that controller (22) with ∗=k k  and r rk k∗=  is not feasible. 

This problem can be easily solved using on-line adaptive control techniques.  
 
For ease of discussion, let [ ]Trk∗ ∗= ,kθ , ˆ [ ( ) ( )]Trt k t= ,kθ , define parameter estimation 

errors ˆ [ ]T T
x r= − = ,θ θ θ θ θ  with ( )x t∗= −k kθ , ( )r r rk k tθ ∗= −  and denote [ ]T Trφ = ,x . 

Accordingly, equation (23) can be written as  
 

( ) r x rg g k r g g rθ∗ ∗= + + − −x A bk x b b x bθ  
 

T
m mg r g φ= + −A x b b θ .       (25) 

 
Define the tracking error m= −e x x . Comparing equations (20) and (25) give the 
closed-loop error equation  
 

T
m g φ= −e A e b θ ,        (26) 

 
which has a stable linear portion and an unknown parametric uncertainty input, which 
turns out to be easily solvable using the facts that (i) given any stable known matrix 

mA , for any symmetric positive-definite matrix Q , there exists a unique symmetric 
positive-definite matrix P  satisfying  
 

T
m m+ = −PA A P Q         (27) 

 



UNESCO – 
EOLS

S

SAMPLE
 C

HAPTERS

CONTROL SYSTEMS, ROBOTICS AND AUTOMATION - Vol. XIII - Lyapunov Design - Shuzhi Ge 

©Encyclopedia of Life Support Systems (EOLSS) 

as detailed in Subsection 3.1, and (ii) the linear-in-the-parameter uncertainty Tφb θ  can 
be dealt with using adaptive techniques. Owing to the above observations, choose the 
Lyapunov function candidate by augmenting the Lyapunov function in (11) with a 
quadratic parameter estimation error term as follows  
 

1( ) T T TV g −, = + , = >e e Pe 0θ θ θΓ Γ Γ .     (28) 
 

Noticing that ˆ= −θ θ , the time derivative of V  is given by  
 

12 2T T T TV g gφ −= − − +e Qe e Pb θ θ θΓ  
 

1 ˆ2 ( )T T Tg φ−= − − −e Qe e Pbθ θΓ Γ .      (29) 
 
Apparently, choosing the parameter adaptation law as  
 
ˆ Tφ= − e Pbθ Γ          (30) 

 
leads to 0TV = − ≤e Qe . Accordingly, the following conclusions are in order: (i) the 
boundedness of e  and θ , (ii) the boundedness of x  and ˆ( )tθ  (i.e., ( )tk  and ( )rk t ) by 
noting the boundedness of mx  and θ , and the boundedness of the control signal u , and 

(iii) the tracking error limt→∞ →e 0  using Barbalat Lemma 1 because (a) 
0

T c
∞

<∫ e e  

with constant 0c >  obtainable from (30), and (b) e  is uniformly continuous since e  is 
bounded as can be seen from equation (26).  
 
The basic ideas are not only readily applicable to MIMO LTI systems, they can also be 
extended for a class of nonlinear systems as will be detailed next.  
 
- 
- 
- 
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