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Summary 
 
The paper presents the basic concepts, mathematical and design aspects of sliding mode 
control.It is shown that the main advantages of sliding mode control are order reduction, 
decoupling design procedures, disturbance rejection, insensitivity to parameter 
variations, simple implementation by means of conventional power converters. The 
methods of suppressing  chattering, caused by discrete-time implementation and 
unmodeled dynamics, are given. The sliding mode control is demonstrated for linear 
time-invariant systems and for control of induction motors.   
 
1. Introduction 
 
The sliding mode control approach is recognized as one of the efficient tools to design 
robust controllers for complex high-order nonlinear dynamic plant operating under 
uncertainty conditions. The research in this area were initiated in the former Soviet 
Union  about 40 years ago, and then the sliding mode control methodology has been 
receiving much more attention from the international control community within the last 
two decades.  
 
The major advantage of sliding mode is low sensitivity to plant parameter variations and 
disturbances which eliminates the necessity of exact modeling. Sliding mode control 
enables the decoupling of the overall system motion into independent partial 
components of lower dimension and, as a result, reduces the complexity of feedback 
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design. Sliding mode control implies that control actions are discontinuous state 
functions which may easily be implemented by  conventional power converters with 
“on-off” as the only admissible operation mode. Due to these properties the intensity of 
the research at many scientific centers of industry and universities is maintained at high 
level,  and sliding mode control has been proved to be applicable to a wide range of 
problems in robotics, electric drives and generators, process control, vehicle and motion 
control. 
 
2. Concept “Sliding Mode”. 
 
The phenomenon “Sliding Mode” may appear in dynamic systems governed by 
ordinary differential equations with discontinuous state functions in the right-hand 
sides. The conventional example of sliding mode – a second order relay system - can be 
found in any text book on nonlinear control. The control input in the second order 
system 
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may take only two values, M  and M− , and undergoes discontinuities on the straight 
line 0s =  in the state plane ( , )x x (Fig.1 for the case 1 2 0a a= = ).  It follows from the 
analysis of the state plane that, in the neighborhood segment mn   on the switching line 

0s = , the trajectories run in opposite directions, which leads to the appearance of a 
sliding mode along this line.  The equation of this line 
 

0x cx+ =  
 
may be interpreted as the sliding mode equation. Note that  
 

• the order of the equation  is less than that of the original system 
• the sliding mode does not depend on the plant dynamics, and is determined by 

parameter c only. 
 

 
 

Figure 1. Sliding mode in a second relay system 
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Sliding mode became the principle operation mode in so-called variable structures 
systems. A variable structure system consists of a set of continuous subsystems with a 
proper switching logic and, as a result, control actions are discontinuous functions of the 
system state, disturbances (if they are accessible for measurement), and reference 
inputs.  The previous example of the relay system with state dependent amplitude of the 
control variable may serve as an illustration of a variable structure system: 
 

  ( ),    u k x sign s k= −   is constant. 
 

 
 

Figure 2. State planes of two unstable structures 
 

 
 

Figure 3. State plane of variable structure system 
 
Now the system with 1 0a = and 2 0a <  consists of two unstable linear structures 
(u kx=   and  u kx= − , Fig.2) with 0x = and 0s =  as switching lines. As it is clear 
from the system state plane, the state reaches the switching line 0s =  for any initial 
conditions. Then, the sliding mode occurs on this line (Fig.3) with the motion equation 

0x cx+ = , while the state vector decays exponentially. Similarly to the relay system, 
after the start of the sliding mode, the motion is governed  by a reduced order equation 
which does not depend on the plant parameters.  
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Now we demonstrate sliding modes in non-linear affine systems of general form 
 

( , ) ( , )x f x t B x t u= +  ,           (1) 
 

( , )

( , )
i

i
i

u x t
u

u x t

+

−

⎧⎪= ⎨
⎪⎩

    
if
if

  
( ) 0
( ) 0

i

i

s x
s x

>
<

   1,..., ,i m=            (2) 

 
where nx R∈  is a state vector, mu R∈  is a control vector, ( ,t)iu x+ , ( , )iu x t−  and 

( )is x  are continuous functions of their arguments, ( ,t) ( , )i iu x u x t+ −≠ . The control is 
designed as a discontinuous function of the state such that each component undergoes 
discontinuities in some surface in the system state space. 
 
Similar to the above example, state velocity vectors may be directed towards one of the 
surfaces and sliding mode arises along it (arcs ab  and cb  in Fig.4). It may arise also 
along the intersection of two of surfaces (arc ).bd  

 

 
 

Figure 4. Sliding mode in discontinuouity surface and their intersection 
 
Fig.5 illustrates the sliding mode in the intersection even if it does not exist at each of 
the surfaces taken separately.  

 

 
 

Figure 5. Sliding mode in intersection of discontinuity surfaces 
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For the general case (1) sliding mode may exist in the intersection of all discontinuity 
surfaces 0,is =  or in the manifold  
 
 (3) 
 
of dimension .n m−  
 
Let us discuss the benefits of sliding modes, if it would be enforced in the control 
system. First, in sliding mode the input s  of the element implementing discontinuous 
control is close to zero, while its output  (exactly speaking its average value )avu  takes 
finite values (Fig.6).  
 

 
 

Figure 6. High gain implementation by sliding mode 
 
Hence, the element implements high (theoretically infinite) gain, that is the conventional 
tool to reject disturbance and other uncertainties in the system behavior. Unlike to 
systems with continuous controls, this property called invariance is attained using finite 
control actions. Second, since sliding mode trajectories belong to a manifold of a 
dimension lower than that of the original system, the order of the system is reduced as 
well. This enables a designer to simplify and decouple the design procedure. Both order 
reduction and invariance are transparent for the above two second-order systems. 
 
3. Sliding Mode Equations 
 
So far the arguments in favor of employing sliding modes in control systems have been 
discussed at the qualitative level. To justify them strictly, the mathematical methods 
should be developed for describing this motion in the intersection of discontinuity 
surfaces and deriving the conditions for sliding mode to exist.   
 
The first problem means deriving differential equations of sliding mode. Note that for 
our second-order example the equation of the switching line  0x cx+ =  was 
interpreted as the motion equation.  But even for a time invariant second-order relay 
system  
 

1 11 1 12 2 1

2 21 1 22 2 2 1 2,   ( ),   ;  , , ,  are ij i

x a x a x b u
x a x a x b u u Msign s s cx x M a b c const
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the problem does not look trivial since in sliding mode 0s =   is not a motion equation. 
 

1( ) 0,   ( ) [ ( ),..., ( )]T
ms x s x s x s x= =
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The first problem arises due to discontinuities in control, since the relevant motion 
equations do not satisfy the conventional  theorems on existence-uniqueness of 
solutions. In situations when conventional methods are not applicable, the usual 
approach is to employ regularization or replacing the initial problem by a closely similar 
one, for which familiar methods can be used. In particular, taking into account delay or 
hysteresis of  a switching element, small time constants in an ideal model, replacing a 
discontinuous function by a continuous approximation are examples of regularization 
since discontinuity points (if they exist) are isolated. The universal approach to 
regularization consists of introducing a boundary layer ,  s const< Δ Δ −  around the 
manifold 0,s =  where an ideal discontinuous control is replaced by a real one such that 
the state trajectories are not confined to this manifold but run arbitrarily inside the layer 
(Fig. 7).  
 
The only assumption for this motion is that the solution exists in the conventional sense.  
If, with the with of the boundary layer Δ  tending to zero, the limit of the solution 
exists, it is taken as a solution to the system with ideal sliding mode. Otherwise we have 
to recognize that the equations beyond discontinuity surfaces do not derive 
unambiguously equations in their intersection, or equations of the sliding mode.  
 

 
 

Figure 7.  Boundary layer 
 
The boundary layer regularization enables substantiation of so-called Equivalent 
Control Method intended for deriving sliding mode equations in manifold 0s =  in 
system (1). Following this method the sliding mode equation with a unique solution 
may derived for the nonsingular matrix  
 
 
 
 
First, the equivalent control  should be found for the system (1) as the solution to the 
equation 0s =  on the system trajectories (G  and -1( )GB  are assumed to exist) : 
 

-10,     =-( ) .eq eqs Gx Gf GBu u GB Gf= = + =  
 

( ) ( ),   ( ) { / },    det( ) 0.G x B x G x s x GB∂ ∂= ≠
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Then the solution should be substituted into (1) for the control 
 

-1= ( )x f B GB Gf− .           (4) 
 
Equation (4) is the sliding mode equation with initial conditions ( (0),0) 0s x = .  
Since ( ) 0s x =  in sliding mode m  components of the state vector may be found as a 

function of the rest ( )n m−  ones: n-m
2 0 1 2 0 1( );  , ;   mx s x x s x= ∈ℜ ∈ℜ and, 

correspondingly, the order of the sliding mode equation may be reduced by :m  
 

2 1 1 0 1 1[ , , ( )],  .n mx f x t s x f −= ∈ℜ            (5) 
 
The idea of the equivalent control method may be easily explained with the help of 
geometric consideration. Sliding mode trajectories lie in the manifold  0s =  and the 
equivalent control equ  being a solution to the equation 0s =  implies replacing the 
original discontinuous control by such continuous one that  the state velocity vector lies 
in the tangential manifold and as a result the state trajectories are in this manifold. It will 
be important for control design that sliding mode equation  
 

• Is  of reduced order 
• Does not depend on control 
• Depends on the equation of switching surfaces. 

 
- 
- 
- 
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