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Summary 
 
The notion of chaos was introduced into science in the 1970s. Since then a lot of 
evidences of chaotic behavior in natural and artificial systems have been observed. 
Methods of chaotic systems analysis have turned into an efficient toolbox for 
understanding instabilities of various origins. In this chapter the most important notions 
and results of chaos theory are presented, such as definitions and examples of chaotic 
systems; criteria of chaos, providing basis for qualitative judgment about chaotic 
behavior; quantitative indices measuring chaos related properties of dynamical systems. 

 
1. Introduction 
 
In the second half of the 20th century the scientific vocabulary was enriched with a new 
term: “chaos”. Chaotic system is a deterministic dynamical system exhibiting irregular, 
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seemingly random behavior. Two trajectories of a chaotic system starting close to each 
other will diverge after some time (so-called “sensitive dependence on initial 
conditions”). Mathematically chaotic systems are characterized by local instability and 
global boundedness of the trajectories. Since local instability of a linear system implies 
unboundedness (infinite growth) of its solutions, chaotic system should be necessarily 
nonlinear, i.e. should be described by a nonlinear mathematical model. 
 
Chaotic systems provide researchers with a new way to describe uncertainty, without 
appealing to probabilistic concepts. Unlike conventional paradigm of deterministic 
models, where model is believed to be suitable for prediction with an arbitrarily long 
horizon given the current system state, prediction error of a chaotic system is growing 
with time exponentially because of its instability. Therefore, chaotic model is good for 
prediction only for a restricted time, the prediction horizon depending on the required 
prediction accuracy. 
 
Since 1975, when the term ``chaos" was introduced by T. Li and J. Yorke into scientific 
discussions and publications, chaotic phenomena and chaotic behavior have been 
observed in numerous natural and model systems in physics, chemistry, biology, 
ecology, etc. Paradigm of chaos allows us to better understand inherent properties of 
natural systems. Methods of chaotic systems analysis are mature enough today and 
allow for broad usage of nonlinear models in science and technologies. An advantage of 
nonlinear models is their ability to describe complex behavior with a small number of 
variables and parameters. Among perspective areas of engineering applications are 
lasers and plasma technologies, mechanical and chemical engineering, system 
engineering and telecommunications. 
 
A key property of chaotic systems is its instability: sensitive dependence on initial 
conditions. An important consequence is high sensitivity with respect to changes of 
external disturbance (input or controlling action). It means that small portions of control 
may produce large variations in systems behavior. Possibilities of controlling complex 
behavior by means of small control open new horizons both in science and in 
technology. 
 
In addition to instability analysis, based on studying individual trajectories, statistical 
approach can be used based on studying ergodic properties of ensembles of trajectories. 
Such an approach   allows describe the integral, typical properties of trajectories, 
eliminating exceptional, atypical trajectories. 
 
(see Control of chaotic  systems, Control of bifurcations and chaos) 
 
2. Notions of Chaos 
 
2.1. From Oscillations to Chaos: Evolution of the Concept of Oscillations 
 
Chaotic systems are understood as those exhibiting complex, irregular oscillatory 
behavior. Unlike regular oscillations composed of one or several periodic components 
and having fixed amplitudes and finite frequency spectra, chaotic oscillation are 
characterized by changing, “floating” of both amplitudes and frequencies of oscillations. 
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Since oscillatory phenomena appear in many natural and technical systems, models and 
methods of their description are in process of sustained development. Before the 
beginning of 20th century models of oscillatory systems were usually chosen as linear 
differential equations, e.g. 
 

( ) ( )2 0, , 0 .y t y t tω ω+ = ∈ℜ ≤ < ∞��  (1) 

 
Solutions of (1) are simple harmonic oscillations: 

( ) 0 1sin cosy t A t A tω ω= +  (2) 

 

where ω  is circular frequency, 2 /T π ω= , is period, 2 2
0 1A A A= + is amplitude. 

Amplitude depends on initial conditions: ( )1 0A y= , ( )0 0 /A y ω= �  (see Fig. 1, a, for 
1ω = ). The solution of (2) continuously depends on initial conditions: a small change of 

( )0 , (0)y y�  leads to a small change of ( )y t  over the whole time semi-axis 0 t≤ < ∞ . 
Besides, the frequency spectrum of the function (2) consists of one point / 2ω π  (see 
Fig. 1, b), i.e. it is discrete. 
 
To describe more complex oscillations a composition of models (1) having different 
frequencies 1, , rω ω…  can be employed. For example, series connection of two models 
(1) is described by equations 
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This system has particular solutions of the form ( )2 1 1 2 2sin siny t A t A tω ω= + , where 
coefficients 1A , 2A  depend on initial conditions. If the frequencies 1, , rω ω…  are 
commensurable (are integer multiples of some frequency 0ω ), then the solutions will be 
periodic with period 02 /π ω  (see Fig. 2 for 3r = , 1 1ω = , 2 2ω = , 3 4ω = ). Otherwise, if 

iω  are incommensurable, the oscillations are quasiperiodic rather than periodic (see Fig. 
3, where 2r = , 1 1ω = , 2 5 /ω π= ). In both cases the solution depends continuously on 
initial conditions and its spectrum is a finite discrete set.  
 
Note that it is almost impossible to distinguish between periodic and quasiperiodic 
functions (i.e. between rational and irrational frequency ratio) either by eye or by a 
measurement device since measurements have a finite accuracy. 
 
Physics and technology demands at the turn of the 19th and 20th centuries were not 
satisfied by linear models of oscillations. Fundamentals of new mathematical apparatus 
– nonlinear oscillations theory were mainly developed by H. Poincaré, B. Van der Pol, 
A.A. Andronov, E. Hopf, N.M. Krylov and N.N. Bogolubov. The core concept of 
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nonlinear oscillations theory is limit cycle, that is, a periodic trajectory attracting other 
trajectories starting close to it. Typical examples of nonlinear differential models with 
limit cycles are the Van der Pol equation  
 

( )2 21 0,y y y yε ω+ − + =�� �  (3) 

 
where 0ε > ; Duffing equation 

3
0 0,y py qy q y+ − + =�� �  (4) 

 

 

 

Figure 1: Simple harmonic oscillations ( 1ω = ). 

 

 

 

Figure 2: Periodic oscillations ( 1,2,4iω = ). 
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Figure 3: Quasiperiodic oscillations ( 1,5 /iω π= ). 

 

Figure 4: Limit cycle and its spectrum. 

where 0p > , 0q > , 0 0q > ; 2nd-order relay system 

 

( ) 0.y py qy sign y+ + − =�� �  (5) 

 
Even simple nonlinear models allow us to describe oscillations of complex shape, e.g. 
relaxation oscillations (close to square waves). Spectrum of a limit cycle consists of an 
infinite number of frequencies, multiples of some minimum frequency (see Fig. 4), 
where the solution of system (3) for 2.5ε = , 1ω = , ( )0 0.5y = , 0y =�  and its spectrum 
are shown. 
 
During a few decades it was believed that linear models and nonlinear models 
possessing limit cycles describe all possible types of oscillatory behavior. However, in 
the 1940s-1950s mathematicians M. Cartwright and J. Littlewood discovered the 
existence of bounded aperiodic forced solutions in some systems of second order while 
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S. Smale introduced the “horseshow” example and demonstrated that complicated 
aperiodic behavior is not exceptional. A real revolution was inspired by the paper of the 
E. Lorenz published in 1963, who numerically studied a simple nonlinear model of 3rd 
order: 
 

( ) ,
,

,

x y x
y rx y xz
z bz xy

σ= −⎧
⎪

= − −⎨
⎪ = − +⎩

�
�
�

 (6) 

 

now called Lorenz system. System (6) appeared as a simplified model of atmospheric 
turbulence (described by Navier-Stokes equations). Solutions of (6) for some parameter 
values look like irregular oscillations (see, e.g. (Fig. 5 for the case 10σ = , 97r = , 

8 / 3b = ). Trajectories in the state space may approach a limit set (so-called attractor 
having quite an intricate shape. Such systems received significant interest of physicists, 
mathematicians and engineers after publishing in 1971 the paper of D. Ruelle and F. 
Takens, who termed such limit sets “strange attractors” and publishing in 1975 the 
paper by T. Li and J. Yorke, who introduced the term “chaos” for the whole 
phenomenon. 
 
Note that one of the central results of the paper by T. Li and J. Yorke is a special case of 
the theorem due to Ukrainian mathematician A.N. Sharkovsky published in 1964. 
Important contributions into the methods of chaotic systems analysis were made in the 
1960s by Russian (Soviet) researchers A.N. Kolmogorov, V.I. Arnold, Ya.G. Sinai, 
D.A. Anosov, V.K. Melnikov, Yu.I. Neimark, L.P. Shilnikov, among other 
contributions in the field. 
 
Later chaotic behavior was found in numerous model and real world systems in 
mechanics, laser physics, biophysics, chemistry, biology and medicine, electronic 
circuits, etc. It was established by newly developed methods of chaotic systems analysis 
that chaos is not an exceptional form of nonlinear behavior. Loosely speaking, chaotic 
motion arises as soon as the system trajectories are locally unstable yet globally 
bounded. Small initial displacement of chaotic trajectories does not remain small 
infinitely long but grows exponentially as time evolves. Frequency spectrum of a 
chaotic system is continuous (see Fig. 5, b). In many cases such aperiodic, irregular 
oscillations better correspond to the properties of processes in real systems. On the other 
hand, it is impossible to distinguish between chaotic and quasiperiodic functions by eye 
or by a measurement device, because of finite accuracy of the physical measurements. 

 
- 
- 
- 
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