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Summary 
 
The field related to control of chaotic systems was rapidly developing during the 1990s. 
Its state-of-the-art in the beginning of the 21st century is presented in this article. 
Necessary preliminary material is given related to notion and properties of chaotic 
systems, models of the controlled plants and control goals. Several major branches of 
research are discussed in detail:  feedforward or “nonfeedback” control (based on 
periodic excitation of the system); OGY method (based on linearization of Poincaré 
map); Pyragas method (based on time-delay feedback); traditional control engineering 
methods of linear, nonlinear and adaptive control; neural networks; fuzzy control. Some 
unsolved problems concerning the justification of chaos control methods are presented. 
Other directions of research are outlined such as control of distributed (spatio-temporal 
and delayed) systems, chaotic mixing, generation of chaos (chaotization), etc. Areas of 
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existing and potential applications in science and engineering are pointed out. 
 
1. Introduction 
 
Chaotic system is a deterministic dynamical system exhibiting irregular, seemingly 
random behavior. Two trajectories of a chaotic system starting close to each other will 
diverge after some time (so-called “sensitive dependence on initial conditions”). 
Mathematically chaotic systems are characterized by local instability and global 
boundedness of the trajectories. Since local instability of a linear system implies 
unboundedness (infinite growth) of its solutions, chaotic system should be necessarily 
nonlinear, i.e. should be described by a nonlinear mathematical model.  
 
Control of chaos, or control of chaotic systems, is the boundary field between control 
theory and dynamical systems theory studying when and how it is possible to control 
systems exhibiting irregular, chaotic behavior. Control of chaos is closely related to 
nonlinear control, and many methods of nonlinear control are applicable to chaotic 
systems. However control of chaotic systems has some specific features. 
 
A key property of chaotic systems is its instability: sensitive dependence on initial 
conditions. An important consequence is high sensitivity with respect to changes of 
input (controlling action). It means that small changes of control may produce large 
variations in systems behavior. Such a phenomenon and its implications in physics were 
described in the seminal paper of 1990 by E. Ott, C. Grebogi, J. Yorke from the 
University of Maryland, USA that triggered an explosion of activities and thousands of 
publications during the following decade. 
 
A typical control goal when controlling chaotic systems is to transform a chaotic 
trajectory into a periodic one. In terms of control theory it means stabilization of an 
unstable periodic orbit or equilibrium. A specific feature of this problem is the 
possibility of achieving the goal by means of an arbitrarily small control action. Other 
control goals like synchronization and chaotization can also be achieved by small 
control in many cases. 
 
For almost three decades after the term “chaos” was coined, chaotic phenomena and 
chaotic behavior have been observed in numerous natural and model systems in physics, 
chemistry, biology, ecology, etc. Paradigm of chaos allows us to better understand 
inherent properties of natural systems. Engineering applications are rapidly developing 
in areas such as lasers and plasma technologies, mechanical and chemical engineering 
and telecommunications. Possibilities of controlling complex behavior by means of 
small control open new horizons both in science and in technology. 
 
Development of new methods for control of chaos or “control by tiny corrections” may 
be of utmost importance for sustained development of humanity. They may be efficient 
for solving problems where applying stronger control is not possible either because of 
lack of resources (like in many large scale systems: economies, energy systems, weather 
control, etc.) or because intervening the natural dynamics is undesirable (e.g. in 
biological and biomedical applications, ecological systems). 
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It is worth noticing that, in spite of the enormous number of published papers, not many 
rigorous mathematical results are so far available. A great deal of results is justified by 
computer simulations rather than by analytical tools and many problems remain 
unsolved. Main approaches to controlling chaotic behavior are described below. Before 
exposition of the methods some preliminaries are given concerning system models, 
control goals and properties of chaotic systems. 
 
2. Notion of Chaos 
 
There exist different formal definitions of a chaotic system underlying different features 
of chaotic behavior. Loosely speaking, chaotic processes are defined as solutions of 
nonlinear differential or difference equations, characterized by local instability and 
global boundedness. Their main feature is that the solutions with arbitrarily close initial 
conditions diverge to a rather large distance after some time (so-called “sensitive 
dependence on initial conditions”). Formal definitions are based on appropriate 
formalizations of stability concept. Below a typical definition and a typical criterion of 
chaos are introduced. More details can be found in Modeling and analysis of chaotic 
systems. 
  
Consider a dynamical system described by the differential equation 
 

( ) ,x F x=�  (1) 
 
where nx∈ℜ  is n -dimensional state vector, /x d dt=� stands for the time derivative of 
x . Let ( )x t , 0 t≤ < ∞  be a solution of the system (1) with initial condition ( ) 00x x= . 
To define a chaotic system the notions of attracting set, attractor and a chaotic 
attractor are used. 
 
A set B  is called an attracting set for system (7) if there exists an open set 0B B⊃ such 
that all the solutions ( )x t  starting from the set 0B  exist for all 0t ≥  and 

( )( )lim , 0
t

dist x t B
→∞

=  for any solution ( )x t  with ( ) 00x B∈ . The set of initial 

conditions 0B  for which (8) holds is called basin of attraction. A closed attracting set B  
is called attractor if it is minimal, i.e. there is no smaller attracting subset of B . An 
attractor B  is called chaotic if it is bounded and all the trajectories starting from it are 
Lyapunov unstable. Finally, a system (1) is called chaotic if it possesses at least one 
chaotic attractor. Similar definitions are introduced for discrete-time system 

( )1k kx f x+ = , 0,1,k = …  
 
Because of coexistence of different definitions of chaos, theoretical studies are often 
based only on some features of chaotic systems, without specifying a rigorous 
definition. An important feature of chaotic trajectories for many purposes is recurrence: 
they return to any vicinity of any past value of the trajectories. 
 
Since formal verification of chaoticity of a system behavior is usually very difficult, 
various numerical criteria are used. The most common criterion of chaotic behavior for 
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a system is the positivity of its largest Lyapunov exponent. For a linear system 
( )x A t x=�  the largest Lyapunov exponent Lρ  is defined as follows: 

 
( )0

L
0

ln ,
lim ,
t

t t
t t

ρ
→∞

=
−

Φ
 (2) 

 
where ( ),t τΦ  is the fundamental matrix of system ( )t=x A x�  satisfying 

( ) ( ) ( ),x t t xτ τ= Φ  for all 1,t τ ∈ℜ , ( )0,0 IΦ = .  
 
Hereafter x  stands for Euclidean norm of a vector or a matrix x , I denotes the unit 
matrix of appropriate size. 
 
For a nonlinear system the largest Lyapunov exponent depends on a prespecified (base) 
solution ( )x t  and for given ( )x t  it can be defined as the largest Lyapunov exponent of 

the system linearized near ( )x t  (i.e. the linear system ( )x A t x=�  with the matrix 

( ) ( )( ) /A t F x t t= ∂ ∂ ). (See Modeling and analysis of chaotic systems)  

 
3. Models of Controlled Systems and Control Goals 
 
Models of controlled systems. A formal statement of a control problem typically 
begins with a model of the system to be controlled (controlled system or controlled 
plant) and a model of the control objective (control goal). If the plant model is not 
given a priori (as in many real life applications) some approximate model should be 
determined in some way. Several classes of models are considered in the literature 
related to control of chaos. The most common class consists of continuous systems with 
lumped parameters described in state space by differential equations 
 

( ), ,x F x u=�  (3) 
 
where x  is n -dimensional vector of the state variables; u  is m -dimensional vector of 
inputs (control variables). The vector–function ( ),F x u  is usually assumed continuously 
differentiable which guarantees local existence and uniqueness of solutions of (3). The 
model should also include the description of measurements, i.e. the l -dimensional 
vector of output variables y  should be defined, for example 
 

( ).y h x=  (4) 
 
If the outputs are not defined explicitly, it is assumed that all the state variables are 
available for measurement, i.e. y x= . 
 
The model (3) encompasses two physically different cases: 
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A. The input variables represent some physical variables (forces, torques, intensity of 
electrical or magnetic fields, etc.). For example a model of a controlled oscillator 
(pendulum) can be put into  the form 
 

( )sin ,J r ml u tϕ ϕ ϕ+ = =�� �  (5)  
 
where ϕ  is the angle of deflection from vertical; , ,J m l  are physical parameters of the 
pendulum (inertia, mass, length); ( )u t  is a controlling torque. The description (5) is 

transformable into the form (3) with the state vector ( )T,x ϕ ϕ= � . 
 
B. The input variables represent change of physical parameters of the system, i.e. 
( ) 0u t p p= − , where 0p  is the nominal value of the physical parameter p . For 

example, in the case when the pendulum is controlled by changing its length, its model, 
instead of (5), becomes 
 

( )( )0 sin 0,J r m l u tϕ ϕ ϕ+ = + =�� �  (6) 
 
where 0l  is the initial length of the pendulum. 
 
Although from a physical point of view the difference between the cases A and B does 
exist, for the purpose of studying the nonlinear system (3) this difference can be 
neglected. 
 
If external disturbances are present, more general time-varying models 
 

( ), ,x F x u t=�  (7) 
 
are considered. Often more simple affine in control models 
 

( ) ( )x f x g x u= +�  (8) 
 
can be employed. 
 
It is convenient for the purposes of analysis to represent a nonlinear system in the so-
called Lurie form: system consisting of a linear part 
 

,x Ax Bu y Cx= + =�  (9) 
 
where , ,A B C  are constant matrices of appropriate dimensions with a static nonlinearity 
 

( ).u yϕ=  (10) 
 
If the nonlinear part satisfies some input-output relations, e.g. sector constraints:  
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( ) ,y K yϕϕ ≤  (11) 
 
then for analysis of Lurie systems efficient frequency-domain methods based on 
examination of the frequency response Re ( )W jω , where ( ) ( ) 1W C I A Bλ λ −= −  is the 

transfer function of the linear part (9), 1j = −  can be employed. 
 
Many real world systems can be described by discrete-time state-space models  
 

( )1 , .k d k kx F x u+ =  (12) 
 
where , ,n m l

k k kx u y∈ℜ ∈ℜ ∈ℜ , are the values of the state, input and output vectors at 
the k th stage of the process, respectively. Since the model (12) can be described by 
specifying the map dF , in the literature the term “control of the map” is often used 
instead of “control of the discrete-time system”. 
 
In some cases delay-differential models 
 

( ) ( ) ( ) ( )( ), , , ,ux F x t x t u t u tτ τ= − −�  (13) 
 
and delay-difference models 
 

( )1 d 1, , , , , ,
uk k k k k kx F x x x u uτ τ+ − − −= … …  (14) 

 
are used. To determine solutions of system (13) on some time interval [ ]0 1,t t  it is 

necessary to specify the initial state function ( ){ }0 0 0,X x s t s tτ= − ≤ ≤  in addition to 

the input function ( ){ }0 0 0,U u s t s tτ= − ≤ ≤ . In what follows it is assumed that all the 
models under consideration satisfy conditions guaranteeing existence of the their 
solutions starting from given initial conditions for all 0t t≥ . For simplicity we will also 
assume that 0 0t =  whenever possible. 
 
Control goals. Stabilization. A typical goal for control of chaotic systems is 
stabilization of an unstable periodic solution (orbit). Let ( )x t∗  be the T -periodic 

solution of the free ( ( ) 0u t = ) system (3) with initial condition ( ) 00x x∗ ∗=  i.e. 

( ) ( )x t T x t∗ ∗+ =  for all 0t ≥ . If the solution ( )x t∗  is unstable, a reasonable goal is 

stabilization or driving solutions ( )x t  of (3) to ( )x t∗  in the sense of fulfillment of the 
limit relation 
 

( ) ( )lim 0
t

x t x t∗→∞
− =⎡ ⎤⎣ ⎦  (15) 
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or driving the output ( )y t  to the desired output function ( )y t∗ , i.e. 
 

( ) ( )lim 0
t

y t y t∗→∞
− =⎡ ⎤⎣ ⎦  (16) 

 
for any solution ( )x t  of (3) with initial conditions ( ) 00x x= ∈Ω , where Ω  is a given 
set of initial conditions. 
 
The problem is to find a control function in the form of either an open-loop 
(feedforward) control  
 
( ) ( )0,u t U t x=  (17) 

 
or in the form of state feedback 
 
( ) ( )( )u t U x t=  (18) 

 
or output feedback 
 
( ) ( )( )u t U y t=  (19) 

 
to ensure the goal (15) or (16). 
 
Such a problem is nothing but a tracking problem standard for control theory. However 
the key feature of the control of chaotic systems is to achieve the goal by means of 
sufficiently small (ideally, arbitrarily small) control. Solvability of this task is not 
obvious since the trajectory ( )x t∗  is unstable. 
 
A special case of the above problem is stabilization of the unstable equilibrium 0x∗  of 
system (3) with 0u = , i.e. stabilization of 0x∗ , satisfying ( ),0 0oF x∗ = . Again, this is 
just the standard regulation problem with an additional restriction that “small control” 
solutions are sought. Such a restriction makes the problem far from standard: even for a 
simple pendulum, nonlocal solutions of the stabilization problem with small control are 
nontrivial. The class of admissible control laws can be extended by introducing dynamic 
feedback described by differential or time-delayed models. Similar formulations hold 
for discrete and time-delayed systems. 
 
Chaotization. A second class of control goals corresponds to the problems of excitation 
or generation of chaotic oscillations (also called chaotization, chaotification or 
anticontrol). Sometimes these problems can be reduced to the form (16), but the goal 
trajectory ( )x t∗  is no longer periodic, while the initial state is equilibrium. The goal 
trajectory may be specified only partially. Otherwise, the goal may be to meet some 
formal criterion of chaos, e.g. positivity of the largest Lyapunov exponent. 
 
Synchronization. Third important class of control goals corresponds to synchronization 
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(more accurately, controlled synchronization as opposed to autosynchronization or self-
synchronization). Generally speaking, synchronization is understood as concordance or 
concurrent change of the states of two or more systems or, perhaps, concurrent change 
of some quantities related to the systems, e.g. alignment of oscillation frequencies. If the 
required relation is established only asymptotically, one may speak about asymptotic 
synchronization. If synchronization does not exist in the system without control ( 0u = ) 
the following controlled synchronization problem may be posed: find a control function 
( )u t  ensuring synchronization in the closed-loop system. In this case synchronization is 

the control goal. For example, the goal corresponding to asymptotic synchronization of 
the two system states 1x  and 2x  can be expressed as follows: 
 

( ) ( )1 2lim 0.
t

x t x t
→∞

− =⎡ ⎤⎣ ⎦  (20) 

 
In the extended state space { }1 2,x x x=  of the overall system, relation (20) implies 

convergence of the solution ( )x t  to the diagonal set { }1 2:x x x= . 
 
Asymptotic identity of the values of some quantity ( )G x  for two systems can be 
formulated as 
 

( )( ) ( )( )1 2lim 0.
t

G x t G x t
→∞

⎡ ⎤− =⎣ ⎦  (21) 

 
Goal functions. To solve a control problem it is often convenient to rewrite the goals 
(15), (16), (20) or (21) in terms of appropriate goal function ( ),Q x t  as follows: 
 

( )( )lim , 0.
t

Q x t t
→∞

=  (22) 

 
For example, to reduce goal (20) to the form (22) one may choose  
 
( ) 2

1 2 .Q x x x= −  
 
Instead of Euclidean norm other quadratic functions can also be used, e.g. for the case 
of the goal (15) the goal function 
 
( ) ( ) ( )T

, ,Q x t x x t x x t∗ ∗= − Γ −⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦  
 
where Γ  is a positive definite symmetric matrix, “T” stands for matrix transposition can 
be used. The choice of the matrix Γ  provides the possibility of weighting different 
components of the system state vector to take into account differences in their scale or 
importance. 
 
In the case of chaotization problem, a goal function ( )G x  may be introduced such that 
the goal is to achieve the limit inequality 



UNESCO – 
EOLS

S

SAMPLE
 C

HAPTERS

CONTROL SYSTEMS, ROBOTICS, AND AUTOMATION - Vol. XIII- Control of Chaotic Systems - A.L. Fradkov 
 
 

©Encyclopedia of Life Support Systems (EOLSS) 

( )( )lim .t G x t G→∞ ∗≥  (23) 
 
Typical choice of the goal function for chaotization is the largest Lyapunov exponent: 

1G λ=  with 0G∗ > . In some cases the total energy of mechanical or electrical 
oscillations can serve as ( )G x . 
 
In terms of goal functions more subtle control goals can be specified, e.g. the control 
goal may be to modify a chaotic attractor of the free system in the sense of changing 
some of its characteristics (Lyapunov exponents, entropy, fractal dimension, etc). The 
freedom of choice of the goal function can be utilized for design purposes. 
 
(see Elements of control systems, Stability concepts, Popov and circle  criterion) 
 
4. Methods of Controlling Chaos: Continuous-time Systems 
 
4.1. Feedforward Control by Periodic Signal 
 
Methods of feedforward control (also called nonfeedback or open-loop control) change 
the behavior of a nonlinear system by applying a properly chosen input function ( )u t  – 
external excitation. Excitation can reflect influence of some physical action, e.g. 
external force/field/signal, or it can be some parameter perturbation (modulation). In all 
cases the value ( )u t  depends only on time and does not depend on current 
measurements of the system variables. Such an approach is attractive because of its 
simplicity: no measurements or extra sensors are needed. It is especially advantageous 
for ultrafast processes at the molecular or atomic level where no possibility of system 
variable online measurements exists. 
 
The possibility of significant changes to system dynamics by periodic excitation has 
been known, perhaps, since the beginning of the 20th century. A. Stephenson 
discovered in 1908 that a high frequency excitation can stabilize the unstable 
equilibrium of a pendulum. Later theoretical results and experiments of P. Kapitsa, N.N. 
Bogoljubov in the 1940s-1950s triggered the development of vibrational mechanics and 
vibrational control. Analysis of general nonlinear systems affected by high frequency 
excitation is based on the Krylov-Bogoljubov averaging method. According to the 
averaging method stability analysis of a periodically excited system is reduced to 
analysis of the simplified averaged system. The method provides conditions 
guaranteeing approximate stabilization of the given equilibrium or the desired (goal) 
trajectory. A related form of averaging method deals with systems excited by stochastic 
disturbance (dither). Accuracy of averaging method increases if excitation contains 
high-frequency harmonics. For physical systems it implies high forcing amplitudes. 
 
The possibility of transforming a periodic motion into chaotic one and vice versa by 
means of periodic excitation of medium level was demonstrated by V. Alexeev and 
A.Loskutov in 1985 for a fourth-order system describing dynamics of two interacting 
populations. The results were based on computer simulations. In 1990 R. Lima and M. 
Pettini studied Duffing-Holmes oscillator 
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( )3 cosc b a d tϕ ϕ ϕ ϕ ω− + = − +�� �  (24) 
 
by Melnikov method. The right-hand side of (24) was considered as a small perturbation 
of the unperturbed Hamiltonian system. The Melnikov function related to the rate of 
change of the distance between stable and unstable manifolds for small perturbations 
was calculated analytically and parameter values producing chaotic behavior of the 
system were chosen. Then additional excitation was introduced into the parameter of 
nonlinearity ( )1 cosb b tη→ + Ω  and a new Melnikov function was computed and 
studied numerically. It was shown that if Ω  is close to the frequency of initial 
excitation ω  then chaos may be destroyed. Experimental confirmation of this 
phenomenon was made by L. Fronzoni et al. in 1991 using a magnetoelastic device with 
two permanent magnets, an electromagnetic shaker and an optical sensor. 
 
Similar approach was applied by R. Chacon in 1999 to a general model of one-degree-
of-freedom nonlinear oscillator with damping excited with a biharmonic forcing. The 
relation between damping strength and forcing amplitudes guaranteeing either chaotic 
or periodic behavior of the given trajectory of the excited system was obtained. Since 
Melnikov method leads to intractable calculations for state dimensions greater than two, 
analytical results are known only for systems with one degree of freedom. For higher 
dimensions computer simulations are used.  The general problem of finding analytic 
conditions for creation or suppression of chaos by feedforward periodic excitation of 
small or medium level still remains open. 
 
The applications of feedforward control of chaos to control of 2CO  lasers, Josephson 
junctions, liquid crystal models, bistable mechanical devices, circular yttrium-ion-garnet 
films, Murali-Lakshmanan-Chua electronic circuit, FitzHugh-Nagumo equations 
describing propagation of nerve pulses in a neuronal membrane etc. were reported. 
 
(see Describing function method) 
 
- 
- 
- 
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