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Summary  
 
This chapter gives an overview of different techniques for the analysis of fuzzy systems. 
Fuzzy systems are based on sets with gradual membership values and IF-THEN rules. 
The three procedures of fuzzification, inference, and defuzzification transform 
numerical input quantities into numerical output quantities. In most cases, the input-
output relation is equivalent to a nonlinear function. The presented analysis techniques 
focus on fuzzy controllers in closed-loop systems. Basic problems of great practical 
relevance are stability, performance, and robustness of overall system. After 
introductory remarks, the technique to transform fuzzy systems into functional 
descriptions will be shown in the second section for Mamdani-type and Takagi-Sugeno-
type fuzzy systems. Stability analysis of fuzzy systems is the central subject of the third 
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section. It gives an overview of special modifications of classical nonlinear techniques 
for fuzzy systems and fuzzy-based techniques for an online supervision. Further 
approaches to the analysis of stand-alone fuzzy systems and more simulation-based 
techniques for performance and robustness analysis will be presented in the fourth 
section. The chapter ends with a discussion of open problems, future trends, and a 
review of references for further reading.  
 
1. Introduction 
 
In the early years of application of fuzzy logic controllers, most engineers thought that 
this kind of control solutions does not require any analysis. They assumed that fuzzy 
systems contain expert knowledge which guarantees an adequate behavior of the control 
loop. Nevertheless, this optimistic approach often fails, because expert knowledge 
cannot be collected completely. In addition, fuzzy systems show a very complex and not 
always predictable behavior for the engineer. 
 
In non-safety-critical applications, the use of fuzzy controllers without a formal analysis 
might be tolerable after an intensive testing and tuning of the fuzzy controller with the 
real plant. But this approach is not acceptable for many industrial solutions, where 
malfunctions of controllers may cause safety problems or damage the plant. Here, fuzzy 
control competes with classical approaches which provide many analysis techniques to 
prove stability, robustness, controllability, and a lot of further characteristics.  
 
Fuzzy systems process linguistic terms and rules to describe uncertainties of signals and 
relations (in the sense of “possibilities”). Nevertheless, they normally have a 
deterministic input-output behavior. Most fuzzy systems in practice are equivalent to 
static nonlinear functions.  
 
Objects of analysis are stand-alone fuzzy systems or closed control loops containing 
fuzzy controllers. The investigation can be made offline during a design phase or online.  
An analysis of a stand-alone fuzzy system (e.g. completeness of the rule base or 
stability) is important to find design errors, but insufficient to investigate the closed-
loop system, including a fuzzy controller and a plant. As a consequence, techniques to 
analyze closed-loop fuzzy systems become necessary.  
 
However, each offline analysis of control loops requires a plant model. This contradicts 
the classical approach of model-free fuzzy controller design. If a mathematical plant 
model exists, a functional description of the closed control loop results when the fuzzy 
controller is transformed into a nonlinear system. Then, the definitions and the analysis 
methods for the resulting system are very similar to the techniques presented in  Control 
of Nonlinear Systems. Typical structures of fuzzy controllers can often be exploited to 
simplify the analysis. Alternatively, the resulting closed-loop system can be analyzed as 
a fuzzy system, if a fuzzy model of the plant is given. Here, particular definitions are 
used in analysis e.g. fuzzy stability. Different kinds of hybrid approaches are possible 
between these strategies. For instance, fuzzy models of the plant can be generated, but 
the analysis is made after transformation of fuzzy controller and fuzzy plant model into 
nonlinear mathematical equations.  
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An online analysis can be done by means of a further fuzzy system for supervision. This 
supervisor analyzes the real system by means of fuzzy rules on a successful and 
sufficient behavior similar to a human process operator and can optionally work without 
an explicit plant model. Mathematical knowledge for the analysis of fuzzy systems can 
also be formalized into fuzzy rules and used for fuzzy supervision.  
 
The aims of this chapter are 
 

• to demonstrate approaches to transforming fuzzy systems into a nonlinear 
mathematical description (Section 2), 

• to describe different techniques for stability analysis, including special 
modifications for fuzzy systems (Section 3), 

• to present other analysis tasks and methods (Section 4), and  
• to discuss open problems and future trends (Section 5). 

 
2. Transformation Approaches 
 
2.1. Overview 
 
The following section deals with techniques to transform a fuzzy system into a 
mathematical description with equivalent input-output behavior. In many practical 
applications, the transformation is based on the input-output mapping of a fuzzy system, 
including fuzzification, inference, and defuzzification. The fuzzy system mostly has a 
MISO (multiple-input-single-output) or MIMO (multiple-input-multiple-output) 
structure. Additional continuous-time or discrete-time dynamic (and mostly linear) 
subsystems exist only externally and are not part of the fuzzy system.  
 
From a theoretical point of view, fuzzy systems map a vector of membership functions 

xμ  to a vector of membership functions yμ  with : x yF →μ μ  (Fig. 1, left). The 
membership functions characterize linguistic statements (e.g. about the value of a 
measured variable), but the mapping F  is deterministic. This structure is especially 
suited for fuzzy systems, where the non-defuzzified output of the fuzzy system is 
connected to the input of the fuzzy system (see Fig. 1, right). Such system structures are 
of limited practical importance. 
 

 
 

Figure 1: System structure for an analysis of fuzzy systems (left) and example of a 
simple fuzzy system with external dynamics, where the inference processes rules 

describing the closed-loop system behavior (right) 
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In many practical applications, however, the input and output variables of fuzzy systems 
take on numerical values. As a consequence, the membership functions at the input and 
output of the fuzzy systems ,x yμ μ  in Fig. 1 are singletons. For this, known measured 
values at the input and a numerical valued decision after a defuzzification at the output 
of the fuzzy system are assumed. As a result, the fuzzy system maps a vector of 
numerical input values to a vector of numerical output values. It is equivalent to a 
deterministic, static, nonlinear system (Fig. 2, left) with  
 

( )=y f x  (1) 
 
in case of a Mamdani-type fuzzy system, and  
 

( )=y f x,u  (2) 
 
in case of a Takagi-Sugeno-type fuzzy system. Here, the additional input variable u  
characterizes variables which will be processed only in inference and not in 
fuzzification. It should be noted that different internal structures (e.g. Mamdani-type: 
linguistic terms as rule conclusions, Takagi-Sugeno-type: functions as rule conclusions) 
lead to a similar functional, static description. 
 

 
 

Figure 2: Characteristic schemes for the analysis of Mamdani-type (except for dotted 
lines and u , respectively) or Takagi-Sugeno-type fuzzy systems (including dotted lines 

and u ) – as one static nonlinear subsystem (left) or as static linear (L) and additive 
static nonlinear subsystem (NL) (right) 

 
After an equivalent transformation, the resulting function can also be analyzed as a 
linear subsystem and a parallel nonlinear subsystem with ( )NL= +y Ax f x  in case of 
Mamdani-type systems or ( )LN= + +y Ax Bu f x,u  in case of Takagi-Sugeno-type 
systems (Fig. 2, right). This structure is typical for a robustness analysis, where the 
influence of the remaining nonlinear part will be investigated.  
 
The resulting functions in Eqs. (1-2) are often called “characteristic fields”. They are 
suitable for different analysis tasks. In the following section, typical characteristic fields 
for Mamdani- and for Takagi-Sugeno-type fuzzy systems will be discussed. 
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2.2. Mamdani-type Fuzzy Systems 
 
Mamdani-type fuzzy systems with an s -dimensional input vector x  are defined by 
rules , 1,...,iR i r=  of the type  
 

1 1, , ,: IF ( ) AND AND( ) THEN
i i ii R s s R k k RR x A x A y B= = =  

 
where , ij RA  is a linguistic term of the j-th linguistic input variable in the i-th rule and 

, ik RB is a linguistic term of the k-th linguistic output variable in the i-th rule. 

 
The characteristic field of a Mamdani-type fuzzy system depends on the membership 
functions, the rules, the fuzzy operations for aggregation, activation and accumulation, 
and the defuzzification method (see Fuzzy Control Systems).  
 
To obtain a functional description as in Eq. (1) of the fuzzy system, all these procedures 
have to be transformed into functions. The resulting function normally has a 
complicated structure, because many types of membership functions (e.g. triangular, 
trapezoidal) cause case differentiations. 
 
 An often simpler form is given by points with a rule being completely activated and 
interpolation laws existing between these rules. The interpolation depends crucially on 
the type of membership functions, the fuzzy operation chosen for disjunctions (OR, T-
conorm,⊥ ) and conjunctions (AND, T-norm, ), and the defuzzification method. For 
some fuzzy operations, the interpolation can be non-monotone.  
 
The function f  is mostly continuous, but not differentiable. 
 
The transformation will be demonstrated for an example, a Mamdani-type fuzzy 
controller with 3s =  input (control error e , time derivative of control error e , and 
reference value w , identical membership functions in Fig. 3, left) and the manipulated 
variable y  as output.  
 
A part of the rule base is shown in Table 1 with 
singletons ( 0, 1, 2, 4ZE PS PM PBy y y y= = = = , Fig. 3, middle) as conclusions. As 
defuzzification method, the Center of Singletons method (COS) is used. 
 

w ZE ZE POS POS 
e  
e 

ZE POS ZE POS 

ZE y=ZE y=PS y=ZE y=PM 
POS y=PS y=PM y=PM y=PB 

 
Table 1: Rule base for the example with ZE Zero, POS Positive, PS Positive Small, PM 

Positive Medium, PB Positive Big 
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Figure 3: Membership functions (left: input variables ,e e , and w , middle: output 
variable y  with singletons 0, 1, 2, 4ZE PS PM PBy y y y= = = = ) and interpolation 

behavior as part of a characteristic field (right) 
 
The characteristic field ( , , )y f e e w=  is given by 8r =  rules, the input membership 
functions 

,
( )

j j ix A jxμ = , the chosen fuzzy operations ⊥  and , and the defuzzification 

method COS:  
 

( , , ) ( , , ) ( , , ) ( , , )
,

( , , ) ( , , ) ( , , ) ( , , )
ZE y ZE PS y PS PM y PM PB y PB

y ZE y PS y PM y PB

y e e w y e e w y e e w y e e w
y

e e w e e w e e w e e w

μ μ μ μ

μ μ μ μ
= = = =

= = = =

⋅ + ⋅ + ⋅ + ⋅
=

+ + +
 (3) 

 
with  
 

( , , ) ( ( ( ), ( ), ( )), ( ( ), ( ), ( )))y ZE e ZE e ZE w ZE e ZE e ZE w POSe e w e e w e e wμ μ μ μ μ μ μ= = = = = = ==⊥ , 
… 

( , , ) ( ( ), ( ), ( )))y PB e POS e POS w POSe e w e e wμ μ μ μ= = = == . 
 
By using the bounded sum (⊥ ) and the product ( ), the characteristic field is described 
as  
 

( , , ) (1 min(1,max( ,0))) (min(1,max( ,0)) min(1,max( ,0)))y e e w w e e= + ⋅ +  (4) 
 
Here, the minimum and maximum operations result from the trapezoidal membership 
functions, not from the conjunctions and disjunctions. 
 
Under special conditions, the characteristic field for bounded sum and product is a 
continuous function with multilinear facets (here: (1 ) ( )y w e e= + ⋅ +  for 0 , , 1e e w< < ). 
Fig. 3 shows the output value of a fuzzy system as a function of w  with the constant 

0.1, 0.1e e= = .  
 
For bounded sum ( )⊥  and product (SUM-PROD), Eq. (4) yields a piece-wise linear 
function (0.1,0.1, ) 0.2 (1 min(1,max( ,0)))y w w= ⋅ +  (dotted line in Fig. 3, right). 
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More complicated characteristic fields occur in case of maximum ( )⊥  and minimum 
( ). The interpolation between 0w =  and 1w =  with maximum ( )⊥  and minimum 
( ) (MAX-MIN) is  
 

0.3 /1.1 if 0
(0.3 4 ) /(1.1 ) if 0 0.1
0.7 /(1.3 ) if 0.1 0.5

( 0.1, 0.1, )
0.7 /(0.3 ) if 0.5 0.9
(1.6 ) /(2.1 ) if 0.9 1
0.6 /1.1 if 1

w
w w w

w w
y e e w

w w
w w w

w

≤⎧
⎪ + ⋅ + < ≤⎪
⎪ − < ≤⎪= = = ⎨ + < ≤⎪
⎪ − − < ≤
⎪

>⎪⎩

  (5) 

 
(solid line in Fig.3, right). The non-monotone interpolation in Eq. (5)  is dominated by 
three effects:  
 

• the activation of the rule with y PB=  between 0 0.1w< < ,  
• the activation of two rules with y PS=  between 0.9 1w< < , and  
• the reduced accumulation of y ZEμ =  caused by the decreasing maximum 

activation of the two rules with y ZE=  between 
0.1 0.9 ( 0.9 for 0.1,..., 0.5y ZE y ZEw wμ μ= =< < = = =  for 0.5,..., y ZEw μ ==  

0.9=  for 0.9w = ). 
 
Here, the unexpected local maximum at 0.5w =  can cause different problems in the 
control loop, as the values of w  for constant ,e e  corresponds to a local control gain at 
the operating point described by w . These problems may extend up to instability.  
 
- 
- 
- 
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