
UNESCO – 
EOLS

S

SAMPLE
 C

HAPTERS

CONTROL SYSTEMS, ROBOTICS AND AUTOMATION – Vol. XV - Stability of Hybrid Systems - Michael S. Branicky 

Encyclopedia of Life Support Systems (EOLSS) 

STABILITY OF HYBRID SYSTEMS 
 
Michael S. Branicky 
Electrical Engineering and Computer Science Department, Case Western Reserve 
University, USA 
 
Keywords: Hybrid systems, Lyapunov stability, Multiple Lyapunov functions, Schur 
matrix, State space. 
 
Contents 
 
1. Background and Motivation 
1.1. What is a Hybrid System? 
1.2. Why a Different Theory for Hybrid Systems? 
2. Early Results 
3. Stability via Multiple Lyapunov Functions 
4. Further Results 
4.1. Applications 
Acknowledgements 
Glossary 
Bibliography 
Biographical Sketch 
 
Summary 
 
This section collects work on the general stability analysis of hybrid systems. The 
hybrid systems considered are those that combine continuous dynamics—represented 
by differential or difference equations-with finite dynamics—usually thought of as 
being a finite automaton. We present some general background on stability analysis, and 
then work on the stability analysis of hybrid control systems. Specifically, we review 
multiple Lyapunov functions as a tool for analyzing Lyapunov stability. Other stability 
notions and other analysis tools are discussed in the subsection Going Further. 
Specializing to hybrid systems with linear dynamics in each constituent mode and linear 
jump operators, we review some key theorems for impulsive systems and give 
corollaries encompassing several recently-derived “stability by first approximation” 
theorems in the literature. 
 
1. Background and Motivation 
 
Suppose we are given a dynamical system in nR  specified by a differential 
(respectively, difference) equation: 
 
Σ : ( ) ( )( ) ( ) ( )( )( )respectively, 1x t f x t x t f x t= + =� . (1) 

 
An important concept when analyzing such systems is stability. We give a taste of 
stability theory below and refer the reader to the excellent introduction by Luenberger 
for further details and more advanced references. 
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Stability means that small changes in operating conditions, such as differences in initial 
data, lead to small changes in behavior. Specifically, let ( )x t  and ( )z t  be solutions of Σ 

when the initial conditions are 0x  and 0z , respectively. Further, let ⋅  denote the 

Euclidean distance between vectors, ( )
1 22

1
n

i iiz x z x
=

⎡ ⎤− = −⎢ ⎥⎣ ⎦∑ . 

 
Definition 1 ( Lyapunov Stability of Solution) A solution ( )x t  of ∑ is Lyapunov 

stable if for any 0>E , there exists a ( )δ 0>E  such that all solutions of ∑ with 

( ) ( )0 0z x− < δ  are such that ( ) ( )z t x t− < E  for all 0t > .  Δ 
 
An equilibrium point of ∑ is one which remains unchanged under the dynamics, namely 
a point x  where ( ) 0f x =  (respectively, ( )f x x= ). Since the equilibrium point x  is 

a particular kind of solution (namely, one where ( )x t x≡  for all t), we may talk of the 
Lyapunov stability of equilibrium points. Instead of simply repeating the definition for 
this specific case, though, it is convenient to introduce some new notation. Let ( ),B x R  
denote the ball of radius R about x , that is, all the points y in the state space such that 
x y R− < . 

 
Definition 2 (Lyapunov Stability of Equilibrium Point) An equilibrium point x  of ∑ 
is Lyapunov stable if for any 0R > , there exists an r, 0 < r < R, such that if 0z  is inside 

( ),B x r , then ( )z t  is inside ( ),B x R  for all t > 0. Δ 
 

 
 

Figure 1: Lyapunov stability 
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For all illustration of the concept, see Figure 1, which depicts two stable trajectories in 
continuous time. Other notions are defined in terms of this primitive concept. For 
instance, an equilibrium point is asymptotically stable if it is stable and there is a 0A >  
such that if the system is initiated inside ( ),B x A  the trajectory is attracted to x  as time 
increases; it is exponentially stable if it is attracted to x  at an exponential rate, i.e., 
( ) , , 0tx t x ce cμ μ−− ≤ > ; it is globally asymptotically stable if A may be taken 

arbitrarily large; it is unstable if it is not stable. 
 
Besides introducing the notion of stability above, Lyapunov devised two methods for 
testing the stability of an equilibrium point, which have come to be known as (1) 
Lyapunov’s indirect method, and (2) Lyapunov’s direct method. The indirect method 
involves examining the stability of a linearized version of the function f. Specially, one 
examines the Jacobian matrix, the n n×  matrix of first derivatives of f with respect to x, 
evaluated at the equilibrium point: 
 

1 1 1

1 2

2 2 2

1 2

1 2

n

n

n n n

n

f f f
x x x

f f f
x x x

f f f
x x x x x

F

∂ ∂ ∂
∂ ∂ ∂

∂ ∂ ∂
∂ ∂ ∂

∂ ∂ ∂
∂ ∂ ∂ =

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

…

…

# # % #
…

 (2) 

 
First order approximation  near the equilibrium point, 
 
( ) ( ) ( ), respectively,f x y f x Fy Fy x Fy+ ≈ + = +  (3) 

 
so that  
 
( ) ( ) ( ) ( )( )respectively, 1y t Fy t y t Fy t= + =�  (4) 

 
gives a linear approximation of the perturbations to the solution of ∑ near x . In some 
cases, the stability properties of the system in ∑ can be inferred from those of the linear 
system in Eq.(4). In particular, if all the eigenvalues of F have strictly negative real 
parts (respectively, magnitude strictly less than one), then x  is an asymptotically stable 
equilibrium point of ∑. If any eigenvalue has a positive real part (respectively, 
magnitude greater than one), it is unstable. If all have non-positive real parts but some 
have zero real parts (respectively, have magnitude less than or equal to one but some 
have unity magnitude), then nothing can be concluded about stability from this indirect 
method alone. 
 
Lyapunov’s other, direct method for verifying stability works directly with the nonlinear 
system rather than its linearized version. The basic idea is to seek a type of “energy 
function” that “decreases along trajectories of the system.” Next, we make these notions 
precise. Suppose that x  is an equilibrium point of a given dynamic system. 
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Definition 3 (Lyapunov Function) A candidate Lyapunov function for the system ∑ 
and the equilibrium point x  is a real-valued function V, which is defined over a region 
Ω  of the state space that contains x , and satisfies the two requirements:    
 

• Continuity. V is continuous and, in the case of a continuous-time system, V has 
continuous derivative. 

 
• Positive Definiteness. ( )V x  has a unique minimum at x  with respect to all 

other points in Ω . Without loss of generality, we henceforth assume ( ) 0V x = . 
 

A Lyapunov function for the system ∑ and the equilibrium point x  is a candidate 
Lyapunov function V which also satisfies the requirement. 

 
 

• [Non-increasing. Along any trajectory of the system contained in Ω  the value of 
V never increases. That is, for a continuous-time system, the function 
( ) ( ) ( ) 0V x V x f x= ∇ ≤�  for all x in ,Ω ( ( ) is theV x gradient vector∇ ) for a 

discrete-time system, the function ( ) ( )( ) ( ) 0V x V f x V xΔ = − ≤  for all x in Ω .
   

( ) ( ) ( )
1 2

, , ,
n

V x V x V x
x x x

⎡ ⎤∂ ∂ ∂
⎢ ⎥∂ ∂ ∂⎣ ⎦

…  (5) 

 
With these definitions, we may state the following important theorem (see Luenberger’s 
book, or our Theorem 16 in the case N = 1, for continuous- and discrete-time proofs). 
 
Theorem 4 (Lyapunov Theorem) If there exists a Lyapunov function ( )V x  in the 

region ( ),B x R , 0R > , then the equilibrium point x  is Lyapunov stable. 
 
Summarizing, to use Lyapunov’s direct method (in continuous time, for example) you  
 
1. After examining your system, pick a Lyapunov function candidate V; 
2. Compute V�  (respectively, VΔ ); 
3. Draw conclusions about the system ∑ in Eq.(1). 
 
See Figure 2, which depicts these steps. Also, some important things to note are 
 

• Engineering insight is used to pick V, e.g., in mechanical and electrical 
problems, V can often be chosen as the total (Kinetic plus potential) energy of 
the system. 

 
• The above Lyapunov theorem has a converse, but its sufficiency form stated 

above is often useful as a design tool (e.g., in adaptive control, where one 
chooses a candidate Lyapunov function and then a parameter update rule that 
will result in its being non-increasing over trajectories. 
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Figure 2: Systems analysis cycle for Lyapunov’s direct method. 
 
Given the above, whole books may be written—and many have—on the qualitative 
theory of   dynamical systems, extending to theorems on asymptotic stability and 
instability, global and uniform versions, etc. For one example, 
 
Theorem 5 (Luenberger) Suppose V is a Lyapunov function for a dynamic system and 
an equilibrium point x . Suppose in addition that  
 
• V is defined on the entire state space. 
• V� (x) <0 (respectively, ( ) 0V xΔ < ) for all x x≠ . 

• V(x) goes to infinity as x x−  goes to infinity.  
 
Then x  is globally asymptotically stable. 
 
1.1. What is a Hybrid System? 
 
The simplest hybrid system is a switched system: 
 
( ) ( )( ) { }, 1,..., ,qx t f x t q N= ∈�  (6) 

 
where ( ) nx t R∈ . We add the following assumptions. (1) Each qf  is globally Lipschitz 
continuous. (2) The q’s are picked in such a way that there are finite switches in finite 
time. 
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Such systems are of “variable structure” or  “multi-modal”; they are a simple model of 
(the continuous portion) of hybrid systems. We explain this below. The particular q at 
any given time may be chosen by some “higher process,” such as a controller, computer, 
or human operator, in which case we say that the system is controlled. It may also by a 
function of time or state or both, in which case we say that the system is autonomous. In 
the latter case, we may really just arrive at a single (albeit complicated) nonlinear, time-
varying equation. However, one might gain some leverage in the analysis of such 
systems by considering them to be amalgams of simpler systems. 
 
A real-world example of a switched system is one that arises in the control of the 
longitudinal dynamics of an aircraft. See Figure 3. It is desired that there is good 
tracking of pilot’s input, zn , without violating angle-of-attack constraint. To accomplish 
this, engineers build a good tracking controller and a good safety control (which 
regulates about the maximum angle of attack) and combine them using simple logic. 
The resulting Max Controller is shown in Figure 4. It achieves the stated objectives. 

 

 
 

Figure 3: Longitudinal Aircraft View. 
 

 
 

Figure 4: The Max Controller. 
 
A particular case of interest for Eq.(6) is the case of switched linear systems, where each 
of the qf  is a linear system: 
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( ) ( )( ) { }, 1,..., ,qx t A x t q N= ∈�  (7) 
 
where ( ) nx t R∈ . 
 
In addition to the switching phenomenon discussed above, so-called systems with 
impulse effect often add the possibility of the state’s jumping (also known as “resets”) 
when certain boundaries are crossed. In general, these boundaries are subsets of the 
space, M, but they may be given explicit representation in terms of the zeros of one or 
more functions.  
 

( ) ( )( ) ( ), , ,tz t f z t z t M= ∉�  (8) 
 

( ) ( )( ) ( ), , tz t J z t z t M+ = ∈  (9) 

 
The interpretation of the above is that the dynamics evolves according to the differential 
equation while ( ),z t  is in the complement of tM Z I⊂ × , but that the state is 

immediately reset according to the map J upon the ( ),z t ’s hitting the set tM . See 
Bainov and Simeonov’s book and Branicky’s thesis for more details and conditions on 
when the dynamics is well-defined. There are three main cases of interest: 
 

• Fixed Instants of Impulse Effect. The sets tM  are hyperplanes at fixed instants 
of 1 2, ,....t = τ τ  

 
• Mobile Instants of Impulse Effect. The sets tM  are a sequence of hypersurfaces 

( )k k xσ = τ . 
 

• Autonomous Impulse Effect. The sets tM  are constraints on the state space, i.e., 
they are of the form ,M I M Z× ⊂ . 

 
As an example of a hybrid system consider Pait’s two-state stabilizer for the simple 
harmonic oscillator (S.H.O.). See Figure 5. Here, the hybrid state consists of values for 
the continuous variables x  and y , plus a location (discrete state) in the automaton.  
 
The dynamics of this flavor of hybrid system are such that it stays in a location for T 
seconds (as defined in that location) and then follows the transition arrow which is 
active (determined by conditions on the values of the continuous variables) to the next 
location. 
 
 The system begins in State 2 (left) and stays there for 3 4π  seconds. Example 
dynamics are shown in Figure 6. 
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Figure 5: Pait’s two-state hybrid S.H.O. stabilizer and S.H.O. equations. 
 

 
 

Figure 6: Phase Portrait and Mode Switchings for Pait’s S.H.O. Stabilizer 
 
A hybrid dynamical system is simply an indexed collection of dynamical systems plus 
rules for switching among them “jumping” among them (switching dynamical system 
and/or resetting the state). See Figure 7. This jumping occurs whenever the state 
satisfies certain conditions, given by its membership in a specified subset of the state 
space. Hence, the entire system can be thought of as a sequential patching together of 
dynamical systems with initial and final states, the jumps performing a reset to a 
(generally different) initial state of a (generally different) dynamical system whenever a 
final state is reached. 

 

 
 

Figure 7: Example hybrid dynamical system. 
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