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Summary 
 
Hybrid system theory lies at the intersection of the fields of engineering control theory 
and computer science verification. It is defined as the modeling, analysis, and control, 
of systems which involve the interaction of both discrete state systems, represented by 
finite automata, and continuous state dynamics, represented by differential equations. 
The embedded autopilot of a modern commercial jet is a prime example of a hybrid 
system: the autopilot modes correspond to the application of different control laws, and 
the logic of mode switching is determined by the continuous state dynamics of the 
aircraft, as well as through interaction with the pilot. To understand the behavior of 
hybrid systems, to simulate, and to control these systems, theoretical advances, 
analyses, and numerical tools are needed. In this chapter, a general model for a hybrid 
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system is first presented, along with an overview of methods for verifying continuous 
and hybrid systems. Then, a particular verification technique for hybrid systems, based 
on two-person zero-sum game theory for automata and continuous dynamical systems, 
is described. A numerical implementation of this technique using level set methods, and 
its use in the design and analysis of aircraft collision avoidance protocols, and in 
verification of autopilot logic, is demonstrated. 

1. Introduction 

The field of formal verification in computer science has achieved great success in the 
analysis of large scale discrete systems: using temporal logic to express discrete 
sequences of events, such as Component A will request data until Component B sends 
data, researchers in verification have uncovered design flaws in such safety critical 
systems as microprocessors which control aircraft cockpit displays and design standards 
for a military hardware bus. Discrete analysis, however, is not rich enough to verify 
systems which evolve according to both continuous dynamics and discrete events. 
Embedded systems, or physical systems controlled by a discrete logic, such as the 
current autopilot logic for automatically controlling an aircraft, or a future automated 
protocol for controlling an aircraft in the presence of other aircraft, are prime examples 
of systems in which event sequences are determined by continuous state dynamics. 
These systems use discrete logic in control because discrete abstractions make it easier 
to manage system complexity and discrete representations more naturally accommodate 
linguistic and qualitative information in controller design. While engineering control 
theory has successfully designed tools to verify and control continuous state systems, 
these tools do not extend to systems which mix continuous and discrete state, as in the 
examples above. 
 
Hybrid systems theory lies at the intersection of the two traditionally distinct fields of 
computer science verification and engineering control theory. It is loosely defined as the 
modeling and analysis of systems which involve the interaction of both discrete event 
systems (represented by finite automata) and continuous time dynamics (represented by 
differential equations). The goals of this research are in the design of verification 
techniques for hybrid systems, the development of a software toolkit for efficient 
application of these techniques, and the use of these tools in the analysis and control of 
large scale systems. In this chapter, recent research results are summarized, and a 
detailed set of references is presented, on the development of tools for the verification 
of hybrid systems, and on the application of these tools to some interesting examples.  
 
The problem that has received much recent research attention has been the verification 
of the safety property of hybrid systems, which seeks a mathematically precise answer 
to the question: is a potentially unsafe configuration, or state, reachable from an initial 
configuration? For discrete systems, this problem has a long history in mathematics and 
computer science and may be solved by posing the system dynamics as a discrete game; 
in the continuous domain, control problems of the safety type have been addressed in 
the context of differential games. For systems involving continuous dynamics, it is very 
difficult to compute and represent the set of states reachable from some initial set. In 
this chapter, recent solutions to the problem are presented, including a method, based on 
the level set techniques of Osher and Sethian, which determines an implicit 
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representation of the boundary of this reachable set. This method is based on the 
theorem, proved using two-person zero-sum game theory for continuous dynamical 
systems, that the viscosity solution of a particular Hamilton-Jacobi partial differential 
equation corresponds exactly to the boundary of the reachable set. In addition, it is 
shown that useful information for the control of such systems can be extracted from this 
boundary computation.  
 
Much of the excitement in hybrid system research stems from the potential applications. 
With techniques such as the above, it is now possible to verify, and design safe, 
automated control schemes for low dimensional systems. Two interesting examples, one 
in the verification of protocols for aircraft collision avoidance, and one in the 
verification of mode switching logic in autopilots, are presented in this chapter. Other 
applications that have been studied in this framework are surveyed. This chapter 
concludes with a discussion of problem complexity.  

2. Hybrid Model and Verification Methodology 

2.1. Continuous, Discrete, and Hybrid Systems 

Much of control theory is built around continuous-state models of system behavior. For 
example, the differential equation model given by  
 

( )x f x u d= , ,   (1) 
 

describes a system with state nx∈  that evolves continuously in time according to the 
dynamical system ( )x f= ⋅,⋅, ⋅ , a function of x , unu∈ ⊆U , dnd ∈ ⊆D . In general, 
u  is used to represent variables that can be controlled, called control inputs, and d  
represents disturbance inputs, which are variables that cannot be controlled, such as the 
actions of another system in the environment. The initial state 0(0)x x=  is assumed to 

belong to a set 0
nX ⊆  of allowable initial conditions. A trajectory of (1) is 

represented as ( ( ) ( ) ( ))x t u t d t, , , such that 0(0)x X∈ , and ( )x t  satisfies the differential 
equation (1) for control and disturbance input trajectories ( )u t  and ( )d t . Sastry and 
Doyle are recommended as current references for continuous-state control systems.  
 
Discrete-state models, such as finite automata, are also prevalent in control. The finite 
automaton given by  
 
( Init )Q R,Σ, ,   (2) 
 
models a system which is a finite set of discrete state variables Q , a set of input 
variables u dΣ = Σ ×Σ  which is the Cartesian product of control actions u uσ ∈Σ  and 
disturbance actions d dσ ∈Σ , a set of initial states Init Q⊆ , and a transition relation 

2QR Q: ×Σ →  which maps the state and input space to subsets of the state space ( 2Q ). 
A trajectory of (2) is a sequence of discrete states and inputs, which satisfies the 
transition relation at each step. The original work of Ramadge and Wonham brought the 
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use of discrete state systems to control, though parallels can be drawn between this 
work and that of Church, Büchi and Landweber who originally analyzed the von 
Neumann-Morgenstern discrete games. A comprehensive reference for modeling and 
control of discrete state systems is Cassandras and Lafortune. 
 
Control algorithms are concerned with the design of a signal, either a continuous or 
discrete function of time, which when applied to the system causes the system state to 
exhibit desirable properties. These properties should hold despite possible disruptive 
action of the disturbance. A concrete example of a continuous-state control problem is 
in the control of an aircraft: here the state (position, orientation, velocity) of the aircraft 
evolves continuously over time in response to control inputs (throttle, control surfaces), 
as well as to disturbances (wind, hostile aircraft).  
 
A hybrid automaton combines continuous-state and discrete-state dynamic systems, in 
order to model systems which evolve both continuously and according to discrete 
jumps. A hybrid automaton is defined to be a collection:  
 
( Init Dom )S In f R, , , , ,   (3) 
 
where nS Q= ×  is the Cartesian product of discrete and continuous states; Init S⊆  is 
a set of initial states; ( ) ( )u dIn = Σ ×Σ × ×U D  is the set of actions and inputs; f  is a 
function which takes state and input and maps to a new state, f S In S: × → ; Dom S⊆  

is a domain; and 2SR S In: × →  is a transition relation.  
 
The state of the hybrid automaton is represented as a pair ( )q x, , describing the discrete 
and continuous state of the system. The continuous-state control system is “indexed” by 
the mode and thus may change as the system changes modes. Dom  describes, for each 
mode, the subset of the continuous state space within which the continuous state may 
exist, and R  describes the transition logic of the system, which may depend on 
continuous state and input, as well as discrete state and action. A trajectory of this 
hybrid system is defined as a sequence of continuous flows combined with discrete 
jumps. The introduction of disturbance parameters to both the control system defined by 
f  and the reset relation defined by R  will allow us to treat uncertainties, 

environmental disturbances, and actions of other systems.  
 
The hybrid automaton model presented above allows for general nonlinear dynamics.  
This model was developed from those of Brockett, Branicky, Lygeros, and Nerode and 
Kohn, for which the emphasis was on extending the standard modeling, reachability and 
stability analyses, and controller design techniques to capture the interaction between 
the continuous and discrete dynamics. Other approaches to modeling hybrid systems 
involve extending finite automata to include simple continuous dynamics: these include 
the timed automata of Alur and Dill, linear hybrid automata of Henzinger, and hybrid 
I/O automata of Lynch.  

2.2. Safety Verification 

Much of the research in hybrid systems has been motivated by the need to verify the 
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behavior of safety critical system components. The problem of safety verification may 
be encoded as a condition on the region of operation in the system’s state space: given a 
region of the state space which represents unsafe operation, prove that the set of states 
from which the system can enter this unsafe region has empty intersection with the 
system’s set of initial states.  
 
This problem may be posed as a property of the system’s reachable set of states. There 
are two basic types of reachable sets. For a forward reachable set, the initial conditions 
are specified and one seeks to determine the set of all states that can be reached along 
trajectories that start in that set. Conversely, for a backward reachable set, a final or 
target set of states is specified, and one seeks to determine the set of states from which 
trajectories start that can reach that target set. For time invariant systems ( )x f x=  
without input, it is easy to show that the backwards reachable set is the forwards 
reachable set of ( )x f x= − . It is interesting to note that the forward and backward 
reachable sets are not simply time reversals of each other 
 

 

 

Figure 1: Difference between backwards and forwards reachable sets. 

 
The difference is illustrated in Figure 1 for generic target and initial sets, in which the 
arrows represent trajectories of the system. Figure 2 illustrates how a backwards 
reachable set may be used to verify system safety. 
 

 

 

Figure 2: Using the backwards reachable set to verify safety. 
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Powerful software tools for the automatic safety verification of discrete systems have 
existed for some time, such as Murø (Dill), PVS, SMV, and SPIN. The verification of 
hybrid systems presents a more difficult challenge, primarily due to the uncountable 
number of distinct states in the continuous state space. In order to design and implement 
a methodology for hybrid system verification, it is necessary to represent reachable sets 
of continuous systems, and to evolve these reachable sets according to the system’s 
dynamics. 

 

 
Figure 3: A discrete abstraction with appropriate control information. 

 
It comes as no surprise that the size and shape of the reachable set depends on the 
control and disturbance inputs in the system: control variables may be chosen so as to 
minimize the size of the backwards reachable set from an unsafe target, whereas the full 
range of disturbance variables must be taken into account in this computation. Thus, the 
methodology for safety verification has two components. The first involves computing 
the backward reachable set from an a priori specified unsafe target set; the second 
involves extracting from this computation the control law which must be used on the 
boundary of the backwards reachable set, in order to keep the system state out of this 
reachable set. Application of this methodology results in a system description with three 
simple modes (see Figure 3). Outside of the backwards reachable set, and away from its 
boundary, the system may use any control law it likes and it will remain safe (labeled as 
“safe” in Figure 3). When the system state touches the reachable set or unsafe target set 
boundary, the particular control law which is guaranteed to keep the system from 
entering the interior of the reachable set must be used. Inside the reachable set (labeled 
as “outside safe set” in Figure 3), there is no control law which will guarantee safety, 
however application of the particular optimal control law used to compute the boundary 
may still result in the system becoming safe, if the disturbance is not playing optimally 
for itself. 

3. Verifying Continuous Systems 

Computing reachable sets for safety specifications has been a main focus of the control 
and computer aided verification communities for the past several years. In the past three 
years, several experimental reachability tools have been developed, and may be 



UNESCO – 
EOLS

S

SAMPLE
 C

HAPTERS

CONTROL SYSTEMS, ROBOTICS AND AUTOMATION – Vol. XV - Verification Of Hybrid Systems - Claire J. Tomlin, Ian 
Mitchell, Alexandre M. Bayen, Meeko M. K. Oishi 

Encyclopedia of Life Support Systems (EOLSS) 

classified according to how sets of states are represented, and the assumptions on the 
dynamics under which states are propagated. A group of methods which seek an 
efficient overapproximation of the reachable set is classified as “overapproximative”. 
The tools d/dt (Maler) and Checkmate (Krogh) represent sets as convex polyhedra, and 
propagate these polyhedra under linear and affine dynamics, which could represent 
overapproximations of nonlinear dynamics along each surface of the polyhedra. 
VeriSHIFT uses ellipsoidal overapproximations of reach sets for linear systems with 
linear input; it implements techniques developed by Kurzhanski and Varaiya. The tool 
Coho, developed by Greenstreet and Mitchell uses as set representation two dimensional 
projections of higher dimensional non-convex polyhedra, and evolves these 
“projectagons” under affine over-approximations of nonlinear dynamics using linear 
programming. A recent algorithm by Tiwari and Khanna proposes to divide the 
continuous state space into a finite number of sets, and then to compute the reachable 
set using a discrete algorithm. The method works for polynomial dynamics and the 
subzero level sets of polynomials as set representation: by partitioning the state space 
into a “cylindrical algebraic decomposition” based on the system polynomials, a 
discrete approximation of the dynamics can be constructed. 
 
A second group of methods is based on computing “convergent approximations” to 
reachable sets: here the goal is to represent as closely as possible the true reachable set. 
Methods include numerical computation of static Hamilton-Jacobi equations and to 
techniques from viability theory and set valued analysis. In our work, we have 
developed a reachability computation method based on level set techniques and 
viscosity solutions to Hamilton-Jacobi equations. A set is represented as the zero 
sublevel set of an appropriate function, and the boundary of this set is propagated under 
the nonlinear dynamics using a validated numerical approximation of a time dependent 
Hamilton-Jacobi-Isaacs (HJI) partial differential equation (PDE) governing system 
dynamics.  These convergent approximative methods allow for both control inputs and 
disturbance inputs in the problem formulation, and they compute a numerical solution 
on a fixed grid (the mesh points do not move during the computation). 
 
In most of the overapproximative schemes, the reachable set representation scales 
polynomially with the continuous state space dimension n . Exceptions include 
orthogonal polyhedra, which is exponential in n , and the algorithm based on cylindrical 
algebraic decomposition, in which the representation size depends on the dimension of 
the polynomials involved. Since algorithm execution time and its memory requirements 
generally scale linearly with the size of the representation of the reachable set, 
overapproximative schemes in which the set representation scales polynomially with n  
have a significant advantage over other schemes. However, these overapproximative 
schemes are generally too imprecise for problems in which the dynamics are nonlinear, 
and for which the shape of the reachable set is not a polygon or an ellipse. The schemes 
based on convergent approximations are exponential in n , and thus are not practical for 
problems of dimension greater than about five or six. However, these schemes can all 
handle nonlinear dynamics, they work within a differential game setting, and they make 
no assumptions about the shape of the reachable set. 
 
In this section, using as motivation a classical pursuit-evasion game involving two 
identical vehicles, methodology and results for computing reachable sets for continuous 
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systems (1) are presented. The material in this section is presented in detail in the Ph.D. 
dissertation of Ian Mitchell. 
 
- 
- 
- 
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