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Summary 

 

This chapter provides a short introduction to the main dynamical problems related to the 

rotational motion of celestial bodies. We start by considering various ways to 

characterize this motion and to derive the equations of motion. Although the main 

attention is given to the influence of the gravity torque on the rotational motion, the role 

of other torques is also briefly discussed. In an elementary way, we establish the key 

property of the non-resonant, slightly perturbed, rotational motion of a celestial body 

(under the action of gravity torque only) - the precession of the angular momentum 

vector around the normal to the orbital plane. The resonant spin-orbit coupling is 

considered as well. 

 

1. Introduction. Main Assumptions 

 

Since any real celestial body is not a material point, a complete theory of its motion 

should consider not only the orbital dynamics, but also the rotation of this body around 

its mass center O . The main properties of the rotational motion are discussed in the next 

sections. For further reading we can recommend the textbooks by Beletsky (2001), 

Murray and Dermott (1999) and the reviews from the volume “Dynamics of extended 

celestial bodies and rings” published in a series “Lecture notes in Physics” under the 

editorship of Souchay (2006). 
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The rotational motion of the celestial bodies is usually studied within a “restricted” 

model, which is based on the assumption that the rotation does not influence the orbital 

motion. If this model is accepted, the orbital motion (or, more exactly, the motion of the 

mass center) is supposed to be known – it can be modeled, for example, by considering 

the celestial body as a point mass.  

 

The “restricted” model is accurate enough when the size of the body is much smaller 

than the distance to the center of the celestial body (a star or a planet) around which the 

orbital motion occurs. If the body is orbiting an object of substantially greater mass with 

more or less spherically symmetric internal structure, then a further simplification is 

possible: the gravity field of this object is approximated by the gravity field of the 

attracting center *O . In this case the “restricted” model is equivalent to the assumption 

that the body’s mass center O  moves in a Keplerian orbit around *O .  

 

Sometimes the assumptions of the “restricted” problem are too restrictive. As an 

example we can mention the studies on the dynamics of binary asteroids where the 

analysis of the rotational motion beyond the scopes of the “restricted” problem is 

needed.  

  

Another important assumption is that we will consider the celestial body as non-

deformable (i.e., the distances between any two points of the body keep their values). 

Quite often the term “rigid body” is used to specify this approximation. Due to the 

necessity of explaining the tidal phenomena, the rotational dynamics of deformable 

bodies is actively investigated too. Despite the progress achieved, the theory of the 

rotation of deformable bodies remains complicated and will not be discussed here.  

 

2. Kinematics of Rotational Motion 

 

2.1. Reference Frames used in Studies of Rotational Motion  

 

To characterize the rotational motion of a body we need two Cartesian reference frames 

with the origin at the mass center O . One reference frame is fixed in the body – we will 

denote it as O . The rotational motion leads to a change in the orientation of the 

fixed reference frame O  with respect to the second reference frame, the choice of 

which depends on the specific features of the problem under consideration. Quite often 

it is convenient to introduce the “inertial” reference frame Oxyz  with the axes 

preserving their orientation in the absolute space (the quotation is applied because the 

translational motion of the origin is not required to be uniform). Since we will usually 

suppose that the mass center O  moves in a non-evolving Keplerian orbit, we can orient 

the axis Oz of the inertial reference frame along the normal to the orbital plane (in the 

direction of the angular momentum of the orbital motion with respect to the attracting 

center *O ) and the axis Ox along the direction to the pericenter from *O ; in that case 

the axis Oy is tangent to the orbit when the body moves through the pericenter. If the 

orbit is circular, the axis Ox can be directed along the line passing through the attracting 

center *O
 
and the arbitrary point of the orbit. 
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Sometimes the rotational motion of the body is considered with respect to the so-called 

orbital reference frame O O OOx y z  defined in the following way: the axis OOz is oriented 

along the radius-vector R  of the mass center O  (
*O OR ); the axis OOy is 

perpendicular to the osculating plane of orbital motion and the axis OOx  forms an acute 

angle with the direction of the body’s motion along its orbit.  

 

2.2. Euler Angles  

 

In the XVIII century the famous mathematician Leonard Euler established that the rigid 

body with a fixed point can be moved from one position to any other by only one 

rotation. This statement provides the following opportunity to define the orientation of 

the body: we specify the rotation which allows us to achieve a current orientation of the 

fixed reference frame with respect to, for example, the inertial reference frame from a 

position where the orientations of these reference frames coincide.  

 

The set of all rotations is a group (under the operation of composition) denoted as 

(3)SO . To parameterize this group three parameters are needed. One of the possible 

parameterizations is to represent an element of (3)SO  as a product of three elementary 

rotations about the axes with pre-defined orientation. In particular such parameterization 

can be performed by means of the so-called Euler’s angles , ,    (which are called the 

precession angle, the nutation angle and the proper rotation angle, respectively) 

corresponding to a sequence of rotations about the axes Oz , ON and O  (Figure 1).  
 

 
 

Figure1. Euler’s angles used to define the orientation of the body-fixed reference 

frame with respect to the inertial reference frame. 
 

In studies concerning the rotational dynamics it is frequently necessary to write down 

the components of a vector in the reference frame under consideration, once they are 

known in some other frame. To relate the components of the vector in the different 

reference frames, a transition matrix of the following form is used: 

 

v v

v v

v v

x x x x

y y y y

z z z z

a a a

a a a

a a a
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   
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    
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Here v , v , vx y z  and v , v , v    denote the components of the vector v  in the reference 

frames Oxyz  and O , respectively. To obtain the inverse transformation the 

transposed matrix should be used.  

 

The elements of the transition matrix are functions of the angles used to define the 

orientation of the body: 

 

3 1 3( ) ( ) ( )

x x x

y y y

z z z

a a a

a a a R R R

a a a

  

  

  

  

 
 

 
 
 

, 

 

where 1( )R   and 3( )R   are the matrices defining the elementary rotations around the axis 

of Cartesian reference frame:  

 

1 3

1 0 0 cos sin 0

( ) 0 cos sin , ( ) sin cos 0 .

0 sin cos 0 0 1

R R

 

     

 

   
   

     
   
     

 

By elementary calculations one obtains 
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sin sin ,

x x
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cos sin ,
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a
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 
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sin sin , cos sin , cos .z z za a a        
 

 

2.3. Euler’s Kinematical Equations  

 

To describe how the body changes its orientation, we introduce a vector quantity known 

as the “angular velocity”. It is a pseudo-vector which specifies the angular speed of the 

body and the direction of the instantaneous axis of rotation in the motion around the 

mass center O . Denoting the angular velocity as ω , we write it down as the sum of 

three terms corresponding to the elementary rotations:  

 

z N     ω e e e
 (2.1)

 

 

Here ze and e  denote the unit vectors of the axis Oz  and O respectively, the unit 

vector Ne  is directed along the line of nodes ON  (Figure 1). In scalar form the relation 

(2.1) gives us 
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cos sin sin ,

sin sin cos ,

cos .







     

     

   

 

  

 
 

(2.2) 

 

 

 

Resolving (2.2) with respect to , ,   , we obtain the classical Euler’s kinematical 

equations: 

 

 

 

1
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sin
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ctg sin cos .
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(2.3) 

 

2.4. Singularities Accompanying the Use of Euler Angles  

 

As one can see, Euler’s kinematical equations (2.3) become singular at sin 0  . This 

singularity (very unpleasant for numerical studies) is not connected with something 

special in rotational motion. It is an artifact of the rotation group (3)SO  

parameterization by means of the Euler angles. To avoid this kind of singularity, the 

other parameterizations of (3)SO  can be applied (for example, by means of 

quaternions). 

 

3. Rotational Dynamics: Euler’s Formalism 

 

3.1. The Relation between Angular Momentum and Angular Velocity  

 

Euler’s approach to the rotational dynamics of celestial bodies is based on the angular 

momentum equation 

 

d

dt


G
M

 (3.1) 
 

 

written in the “inertial” reference frame Oxyz . In Eq. (3.1) G denotes the angular 

momentum of the body with respect to the mass center O , M is the total torque (with 

respect to O ) of all forces applied to this body. 

  

To compute G we should sum up the angular momenta of all elements of the body:  

 

( ) ,
V

dV G r v  (3.2) 

where r  and v  denote the radius vector and the velocity of the infinitesimal volume 

element dV with respect to the mass center,  characterizes the local density of the 

matter inside the body and the symbol “ ” is used to denote the vector product. Taking 

into account the relation  
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 v ω r  
 

we rewrite (3.2) as follows:  

 
2( ( )) [ ( , ) ]

V V

dV r dV      G r ω r ω r ω r . (3.3) 

 

Here and below the notation ( , )  is applied for the scalar product in 3R . 

 

As one can see from (3.3) G  depends linearly on the angular velocity ω . To write 

down the relation between these quantities in a more concise way we introduce an 

operator 3 3: R R , defined by the formula  

 
2 T

3[ ]
V

E r dV  rr .      (3.4) 

 

In formula (3.4) 3E  is the 3 3  identity matrix and the dyadic product of vectors is 

used:

 

1 1 1 2 1

2 1 2 2 2

1 2

, , .

n

nT m n

m m m n

a b a b a b

a b a b a b
R R

a b a b a b

 
 
   
 
 
 

ab a b  

 

The relation between G and ω  takes now the remarkable form  

 

G ω .          (3.5) 

 

3.2. Tensor of Inertia and Ellipsoid of Inertia  

 

The formula (3.5) is valid regardless of the reference frame where the components of G  
and ω  are provided. For the matrix representation of the operator  (which depends on 

the choice of the reference frame) the term “tensor of inertia” is used. We can write 

down the tensor of inertia both in the reference frame Oxyz  (which preserves the 

orientation) and in the rotating body-fixed reference frame O , but only in the last 

case the coefficients of the matrix  do not vary with time.  

  

The eigenvectors of  give us the directions of the so called principal central axes of 

inertia: if the body rotates around such an axis, then G is parallel to ω . In general there 

exist three mutually perpendicular principal axes of inertia (fixed in the body!). It allows 

us to introduce the body-fixed reference frame O in a way which simplifies the 

structure of the equations of motion – we will suppose below that the axes O , 

O , O  are directed along the principal axes of inertia. In this reference frame the 

tensor of inertia is given by the diagonal matrix: 
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diag( , , )A B C  
 

2 2 2 2( ) , ( ) ,
V V

A dV B dV         
 

 
2 2( ) .

V

C dV   
 

 

The quantities , ,A B C are called the principal central moments of inertia.  

 

The relation ( , ) 1r r  defines in 3R  the quadratic surface which is called the ellipsoid 

of inertia (or, more precisely, the ellipsoid of inertia corresponding to the mass center 

O ). It is easy to prove that the ellipsoid of inertia is rigidly connected to the body: if the 

body orientation varies in the inertial space, then the orientation of the ellipsoid of 

inertia varies in the same way. Taking it into account, one can characterize the rotational 

motion of the body in terms of its inertia ellipsoid motion (See Section 6.2).  

 

Often enough some kind of resemblance exists between the shapes of the body and of 

its inertia ellipsoid. For example let us consider a homogeneous body bounded by the 

tri-axial ellipsoid (i.e., by the ellipsoid with the different semi-principal axes). The 

directions of its longest, intermediate and shortest principal axes coincide with the 

directions of the corresponding inertia ellipsoid principal axes at the mass center O .  

 

3.3. Euler’s Dynamical Equations  

 

In the rotating reference frame O  the angular momentum equation (3.1) takes the 

form 

 

d

dt


  

G
ω G M . (3.6) 

 

Here the prime indicates that the components of the differentiated vector should be 

expressed in the frame O :  

 
T

, , .
dG dG dGd

dt dt dt dt

    
  
 

G
 

 

Substituting (3.5) into (3.6) and taking into account that in the reference frame O  
the matrix  has constant coefficients, we obtain 

 

d

dt


  

ω
ω ω M  

 

or (in scalar form)  
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( ) ,
d

A C B M
dt



  


     

( ) ,
d

B A C M
dt



  


     

( ) .
d

C B A M
dt



  


     (3.7) 

 

Equations (3.7) are called “Euler’s dynamical equations”.  

 

If the components of the torque M  are the known functions of the variables 

, , , , ,         (and, maybe, of the time t ) then Euler’s dynamical equations (3.7) 

and Euler’s kinematical equations (2.3) form a closed system of differential equations 

describing the rotational motion of the celestial body. 

 

- 

- 

- 
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