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Summary 

Crustal melting, also named “anatexis,” can occur at various depths if suitable values of 
thermodynamic parameters are reached. In the presence of a free H2O-bearing vapor 
phase, quartzofeldspathic and metapelitic rocks at the amphibolite–granulite boundary 
or in the high-temperature zone of the eclogite facies are easily melted because of the 
dP/dT negative slope at crustal depths of the “wet” solidus curve in the pressure–
temperature space. In the more frequent cases where vapor phase is lacking, the anatexis 
isograd is reached at more extreme temperatures that are not attained in normal steady 
geotherms in the crust. Thus, anatexis can occur only if the middle to lower crust is 
subjected to either water influx, increasing heat flow, or both. Such perturbations of the 
steady state of the continental crust are likely to develop extensively during collision 
and post-collision episodes of a major orogenic event. They are less developed in 
within-plate settings. It is expected that anatexis is a distinctive feature of Earth’s 
continental crust and could be lacking in the other terrestrial planets. 



UNESCO – 
EOLS

S

SAMPLE
 C

HAPTERS

GEOLOGY – Vol. II -Ultrametamorphism and Crustal Anatexis - Bernard Bonin 
 

©Encyclopedia of Life Support Systems (EOLSS) 

1. Introduction 

Extreme values of pressure and temperature can be reached by continental and oceanic 
crustal formations in certain circumstances because of either deep burial, or anomalous 
heat flow, or both. These conditions correspond to ultrametamorphism, a term 
originated by Holmquist in 1909. During ultrametamorphic episodes, some types of 
rocks can be subjected to partial melting, which can result in the generation, ascent, and 
emplacement of magmatic bodies and volcanic formations. Current geophysical (mainly 
seismological) studies show that crust, like mantle, is usually at the solid state, implying 
that, though not uncommon, partial melting is never a protracted process. In 1907, the 
Finnish geologist Sederholm was the first to coin the term anatexis for melting of a pre-
existing rock. In the literature, anatexis applies generally to melting of crustal 
formations only, though this restricted meaning is not postulated by the term itself. The 
thermodynamical parameters, such as lithostatic pressure, temperature, fluid pressure 
and activity, oxygen fugacity, bulk compositions of rocks that are melted, and so on, 
constitute critical factors that vary strongly according to geodynamic settings. Their 
values and their variations promote or hinder anatectic processes. 

2. Ultrametamorphic Facies: A Brief Summary 

In this section, “ultrametamorphism” is defined as metamorphism occurring under 
extreme thermodynamic conditions. As such, it constitutes a part of the higher-grade 
regional metamorphism. Extreme pressures refer to depths greater than normal (about 
40 km) crustal ones and have values higher than 1.2 GPa. “Ultra-high pressure 
metamorphism” (UHPM) occurs at pressures higher than 2.8 GPa, the minimum 
pressure required for formation of coesite at ~700 °C, and is characterized by low 
thermal gradients of less than ~15°C km-1. Pressures ranging from 1.2 to 2.8 GPa define 
“high-pressure metamorphism” (HPM). Extreme temperatures refer to thermal gradients 
higher than ~15 °C km-1 up to more than 100 °C km-1 and define “high-temperature 
metamorphism” (HTM). 

2.1. High to Ultra-High Pressure Metamorphism 

The discovery within upper crustal metamorphic formations of Earth of coesite, the 
high-pressure polymorph of silica replacing quartz at depths of more than 85 km, and of 
diamond, the high-pressure polymorph of carbon replacing graphite at depths higher 
than 100 km, has drastically changed scientists’ ideas concerning the limits of crustal 
metamorphism. All the currently described HPM and UHPM areas consist 
predominantly of supracrustal rocks of continental, and more rarely of oceanic, 
affinities. 

In the P–T petrogenetic grid (Figure 1), the HPM space comprises two major facies, 
namely: 

• Blueschist, subdivided into low-temperature lawsonite blueschist LBS and 
medium-temperature epidote blueschist EBS. Temperature is constantly lower 
than 500 °C, while pressure conditions are bracketed between 0.6 and 2.3 GPa. 
Related thermal gradients are very low and less than 7°C km-1. 
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• Eclogite, further subdivided into two subfacies, namely: eclogite sensu stricto 
EC and lawsonite eclogite ECL, both in the quartz stability field. These high-
pressure subfacies yield a range of temperatures between 500 and 1000 °C, 
while pressures vary from 1.2 to 2.8 GPa, corresponding to thermal gradients 
of ~7.5 up to 12.5 °C km-1. 

 

Figure 1. The pressure–temperature petrogenetic grid delineating fields of metamorphic 
facies, and zones for wet and dry crustal melting. Source: after Bousquet et al., 1997. 
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The UHPM space is composed of the other eclogite subfacies, namely: coesite eclogite 
ECC and grossularite eclogite ECG, both in the coesite stability field. These ultra-high-
pressure facies yield a very large range of temperatures up to 1000 °C and are 
essentially defined by pressures higher than the quartz–coesite transition, that is, 2.2 to 
2.8 GPa for this range of temperatures. ECG has recorded pressures of the order of 
magnitude of 5 GPa. Variable thermal gradients range again from 7 up to ~12 °C km-1. 

The most striking feature of HPM to UHPM rocks is that their density increases 
dramatically from normal upper crustal values of 2.75 (granite) to 2.94 (gabbro) to 
values as high as 3.1 to 3.63, respectively. Thus, for any given depths greater than 100 
km, the mafic oceanic crust is constantly heavier than the upper mantle, while the silicic 
continental crust remains less dense than the upper mantle. So different densities, 
depending on their bulk compositions, result in contrasting vertical mobilities of 
metamorphic rocks. 

Water contents in rocks have been computed from water bound in hydrous minerals and 
rock porosities. In the quartz stability field, bulk-rock water amounts remain high in 
blueschists, of the same order of magnitude as in low-grade greenschists, but decrease 
considerably in eclogites, because of the scarcity of hydrous minerals. In the coesite 
stability field, stable hydrous minerals are rare, so that rocks are distinctively water-
deficient. Extreme variability of water contents coupled with temperature will play a 
significant role in the ability of rocks to melt. 

2.2. High-Temperature Metamorphism 

Lower crustal formations exposed in old cratons are usually characterized by high-
temperature dry parageneses. HTM is basically defined by temperatures higher than the 
“wet” granite solidus, that is, more than 650 °C, and, accordingly, by high thermal 
gradients. 

In the P–T petrogenetic grid (Figure 1), the HTM space is occupied by the large area of 
the granulite facies and, along the temperature axis, by the sanidinite facies (not shown 
in the Figure 1). The rare sanidinite facies is found mostly in crustal xenoliths trapped 
into basaltic lava flows, while the granulite facies is regionally expanded. Different 
granulite subfacies have been defined: 

• Two-pyroxene granulite G2PX, characterized by simultaneous crystallization 
of clinopyroxene and orthopyroxene. This subfacies yields the lowest 
pressures, less than 1.2 GPa at 1000 °C. Thermal gradients are typically higher 
than ~50 °C km-1. Dehydration reactions promote dry rocks. Because pressure 
is relatively low, compression is less important than thermal expansion which, 
coupled with dehydration effects, results in rock densities of the same order of 
magnitude as in greenschists. 

• Garnet-plagioclase granulite GGA, characterized by plagioclase replacing 
clinopyroxene. Pressures are bracketed between 1.2 and 1.8 GPa at 1000 °C. 
Thermal gradients range from ~20 to ~50 °C km-1. Higher pressures result in 
slightly higher densities, while rocks are still rather dry. 
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• Kyanite granulite GGAK, characterized by kyanite replacing sillimanite. This 
subfacies yields the highest pressures recorded in granulites, up to 2.2 GPa at 
1000 °C. Accordingly, thermal gradients are the lowest observed, but still 
higher than ~15 °C km-1. The granulite to eclogite transition is marked by the 
no-plagioclase garnet granulite GG. Because of increasing pressure and 
mineralogical changes, dry rock densities increase sharply at the granulite to 
eclogite transition. 

 
3. Anatexis and Migmatites: Where and When? 

The fact that, deep in the crust, some rocks could become partly liquid is not obvious. 
Indeed, the occurrence of liquids in some active orogens has been inferred by 
conductivity modeling, based on laboratory experiments to calibrate the models and 
assuming that silicate liquid is the cause of the anomalies recorded in the data. Field 
observation of rocks likely to have undergone partial melting can be made only after a 
long time has elapsed since the end of the event itself. Evidence for crustal melting is 
represented by migmatites, which constitute a large part of the lower to middle crust of 
eroded orogens. 

- 
- 
- 
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