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Summary 
 
A general framework is sketched for model formulation and inference when outcome 
measurements are of a repeated nature. Emphasis is placed on the linear mixed model 
for Gaussian outcomes, as well as on its non-linear extension. In the non-Gaussian 
setting, a distinction is made between marginal, conditional, and random-effects models, 
whence key members of each family are discussed in detail. In particular, generalized 
linear mixed models and generalized estimating equations receive ample treatment.  
 
1. Introduction  
 
Repeated measures are obtained whenever a specific response is measured repeatedly in 
a set of units. Examples are hearing thresholds measured on both ears of a set of 
subjects, birthweights of all litter members in a toxicological animal experiment, or 
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weekly blood pressure measurements in a group of treated patients. The last example is 
different from the first two examples in the sense that the time dimension puts a strict 
ordering on the obtained measurements within subjects. The resulting data are therefore 
often called longitudinal data. Obviously, a correct statistical analysis of repeated 
measures or longitudinal data can only be based on models which explicitly take into 
account the clustered nature of the data. More specifically, valid models should account 
for the fact that repeated measures within subjects are allowed to be correlated. For this 
reason, classical (generalized) linear regression models are not applicable in this 
context. An additional complication arises from the highly unbalanced structure of 
many data sets encountered in practice. Indeed, the number of available measurements 
per unit is often very different between units, and, in the case of longitudinal data, 
measurements may have been taken at arbitrary time points, or subjects may have left 
the study prematurely, for a number of reasons (sometimes known but mostly 
unknown). 
 
A large number of models has been proposed in the statistical literature, during the last 
few decades. Most of them can be viewed as special cases of one general model which 
will be presented in this contribution. The interpretation of the different components of 
the model and methods for model fitting will be discussed first. Afterwards, some 
frequently used special cases will be presented for the analysis of continuous and for 
discrete data in turn. Although emphasis will be put on longitudinal data, the methods 
discussed are immediately applicable to other types of repeated measurements. 
 
2. General Model 
 
Let ijy denote the jth measurement available for the ith unit, 1, ,i N= … , 1, ij n= …  and 
let iy  denote the vector of all measurements for the ith unit, i.e., 1( , , )

ii i iny y y′ = … . Our 
general model assumes that iy  (possibly appropriately transformed) satisfies 
 

| ~ ( , ),i i i iy b F bθ   (1) 
 
i.e., conditional on ib , iy  follows a pre-specified distribution iF , possibly depending on 
covariates, and parameterized through a vector θ  of unknown parameters, common to 
all subjects. Further, ib  is a q-dimensional vector of subject-specific parameters, called 
random effects, assumed to follow a so-called mixing distribution G which may depend 
on a vector ψ  of unknown parameters, i.e., ~ ( )ib G ψ . The ib  reflect the between-unit 
heterogeneity in the population with respect to the distribution of iy . Different 
factorizations of iF  will lead to different models. For example, considering the factors 
made up of the outcomes ijy  given its predecessors 1 , 1( , , )i i jy y − ′…  leads to a so-called 
transitional model. A model without any random effects ib  is called a marginal model 
for the response vector iy . In the presence of random effects, conditional independence 
is often assumed, under which the components ijy  in iy  are independent, conditional on 
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ib . The distribution function iF  in Eq. (1) then becomes a product over the in  
independent elements in iy . 
 
In general, unless a fully Bayesian approach is followed, inference is based on the 
marginal model for iy  which is obtained from integrating out the random effects, over 
their distribution ( )G ψ . Let ( | )i i if y b  and ( )ig b  denote the density functions 
corresponding to the distributions iF  and G, respectively, we have that the marginal 
density function of iy  equals 
 

( ) ( | ) ( ) ,i i i i i i if y f y b g b db= ∫    (2) 

 
which depends on the unknown parameters θ  and ψ . Assuming independence of the 
units, estimates of θ̂  and ψ̂  can be obtained from maximizing the likelihood function 
built from Eq. (2), and inferences immediately follow from classical maximum 
likelihood theory. 
 
Obviously, the random-effects distribution G is crucial in the calculation of the marginal 
model Eq. (2). One approach is to leave G completely unspecified and to use non-
parametric maximum likelihood (NPML) estimation, which maximizes the likelihood 
over all possible distributions G. The resulting estimate θ̂  is then always discrete with 
finite support. Depending on the context, this may or may not be a realistic reflection of 
the true heterogeneity between units. One therefore often assumes G to be of a specific 
parametric form, such as a (multivariate) normal. Depending on iF  and G, the 
integration in Eq. (2) may or may not be possible analytically. Proposed solutions are 
based on Taylor series expansions of ( | )i i if y b , or on numerical approximations of the 
integral, such as (adaptive) Gaussian quadrature. 
 
Although in practice one is usually primarily interested in estimating the parameters in 
the marginal model, it is often useful to calculate estimates for the random effects ib  as 
well. They reflect between-subject variability, which makes them helpful for detecting 
special profiles (i.e., outlying individuals) or groups of individuals evolving differently 
in time. Also, estimates for the random effects are needed whenever interest is in 
prediction of subject-specific evolutions. Inference for the random effects is often based 
on their so-called posterior distribution ( | )i i if b y , given by 
 

( | ) ( )( | )
( | ) ( )
i i i i

i i i

i i i i i

f y b g bf b y
f y b g b db

=

∫
  (3) 

 
in which the unknown parameters θ  and ψ  are replaced by their estimates obtained 
earlier from maximizing the marginal likelihood. The mean or mode corresponding to 
Eq. (3) can be used as point estimates for ib , yielding empirical Bayes (EB) estimates. 
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3. Some Models for Continuous Data 
 
Most longitudinal models for continuous responses assume that all ijy  are normally 
distributed, possibly after appropriate transformation, i.e., it is assumed that 

~ ( , )i i iy N µ V , for some parameterization of the mean vector iµ  and covariance matrix 

iV . Many different models have been proposed for iµ  as well as for iV , some of which 
will be presented in the following sections. 
 
3.1. Multivariate Linear Regression Models 
 
The multivariate regression model is one of the most frequently used models for the 
analysis of balanced data, i.e., data where a fixed number n  of repeated measurements 
is taken at fixed time points for all units. It assumes that iµ  is of the form iX β  for some 
known ( )n p×  design matrix iX  and associated vector β  of p  unknown regression 
coefficients, and that all matrices iV  are equal to a general unstructured covariance 
matrix V . The parameter vector θ  then consists of the regression parameters in β  and 
the vector α  of ( 1) / 2n n +  variances and covariances in V . The maximum likelihood 
estimators of β  and V  satisfy 
 

1

1 1

1 1

ˆ ˆ ˆ' ' ,
N N

i i i i
i i

X V X X V yβ
−

− −

= =

⎛ ⎞
= ⎜ ⎟⎜ ⎟
⎝ ⎠
∑ ∑   (4) 

 

1

1 ˆ ˆˆ ( )( ) ',
N

i i i i
i

V y X y X
N

β β
=

= − −∑   (5) 

 
and estimates are obtained from iterating between Equations (4) and (5) until 
convergence is attained. 
 
Note that, in case of high dimensional vectors iy , the number of parameters in α  is 
large, which may result in inefficient inferences, also for the regression coefficients in 
β , which are usually of primary interest. Therefore, a parsimonious parameterization of 
the covariance matrix V  is often looked for, i.e., V  is assumed to have a specific 
parametric form, depending on a (relatively) small number of unknown parameters, 
again combined into a vector α . In general, β̂  then still satisfies Eq. (4), but no 
analytic expression is available to replace Eq. (5) such that full numerical maximization 
routines are required for the joint calculation of the maximum likelihood estimates β̂  
and α̂ . 
 
Many parametric models for V  have been proposed in the statistical literature. 
Examples are the Toeplitz model, the first-order autoregressive model, and the 
compound symmetry model. Let the ( , )k l  element of V  be denoted by klv . A Toeplitz 
model assumes that klv  only depends on k l−  resulting in a so-called banded 
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covariance matrix with constant covariances in bands parallel to the main diagonal. A 
special case is the first-order autoregressive model, AR(1), in which the elements klv  

satisfy 2 k l
klv σ ρ −= , for some correlation parameter ρ . Finally, the compound 

symmetry model corresponds to a covariance matrix V  with constant variance and 
constant covariance. In case the assumptions of common variance are not appropriate, 
straightforward heterogeneous extensions can be made to each of these parametric 
models. 
 
Depending on the context, as well as on the design of the study, some parametric 
models may not be appropriate while other models are particularly appropriate. For 
example, the Toeplitz and AR(1) models are only meaningful when there exists a 
natural strict ordering in the repeated measurements within units. For example, if units 
represent families, and repeated measurements correspond to measurements taken on 
different members of those families, no such ordering is present, implying that a 
covariance model should be selected which allows for exchangeability of the repeated 
measurements within units, i.e., the compound symmetry model or its heterogeneous 
version. Even for the analysis of longitudinal data, where the time dimension implies a 
natural ordering of the measurements within units, the Toeplitz or AR(1) structures may 
not be valid. For example, consider a longitudinal experiment, with n  measurements 
taken at fixed time points jt , 1, ,j n= … . Both models then implicitly assume that the 
covariance (and in case of the homogeneous models also the correlation) between iky  
and ( 1)i ky + , 1, , 1k n= −…  does not depend on k , which is only fully interpretable if the 

time points jt  are equally spaced, i.e., if 1k kt t +−  is independent of k  as well. In 
examples with unequally spaced time points, so-called spatial covariance structures can 
be used, which model klv  as ( )( ) ( )k l k lt t t tσ σ ρ − , for some standard deviation function 

( )tσ  and some (usually monotonically decreasing) correlation function ( )uρ  with 
(0) 1ρ = . Common choices for ( )uρ  are the exponential serial correlation structure 
( ) exp( )u uρ φ= −  and the Gaussian serial correlation function 2( ) exp( )u uρ φ= − , with 

φ  some unknown parameter to be estimated from the data. Note that, in case of equally 
spaced time points, the exponential serial correlation model reduces to the AR(1) model, 
and that the homogeneous versions of the spatial covariance structures are obtained 
from assuming ( )tσ  to be constant. 
 
Although multivariate linear regression models are primarily used in the case of 
balanced repeated measurements data, they can, strictly speaking, also be used to model 
unbalanced data. It is then assumed that the covariance matrices iV  are modeled through 
a fixed number of variance components, i.e., the number of variance and covariance 
parameters does not depend on the number of subjects included in the sample. The 
maximum likelihood estimator of β  then still satisfies Eq. (4), but with V  replaced by 
the subject-specific matrices iV , and full numerical maximization routines are again 
required for the joint estimation of β  and the covariance parameters in all iV , which are 
still combined into a vector α . 
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