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Summary 

Spatial modeling is increasingly prominent in the biological sciences as scientists 
attempt to characterize variability of processes that are spatially indexed. This chapter 
shows that the mixed model framework is useful for characterizing spatial statistical 
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methodology. In particular, the classical geostatistical approach known as kriging can 
be cast as a linear mixed model. Furthermore, the generalized linear mixed model 
provides a natural framework for extending the methodology to allow modeling of non-
Gaussian spatial processes. The mixed model framework is also useful for describing 
multivariate spatial models and many spatiotemporal models. These are discussed in the 
chapter as well as specific issues related to covariance modeling, estimation and 
prediction, computation, and Bayesian methodologies.  
 
1. Introduction 
 
Since its inception as a discipline, statistics has provided tools by which scientists can 
better understand complex processes. Primarily this is because statistics is concerned 
with the study of variability, and all natural processes exhibit variability. As scientists 
seek to answer ever more challenging questions concerning processes that vary over 
space, the traditional statistics methods that one might learn in introductory statistics 
courses are not sufficient to adequately account for this variability. However, at least in 
principle, relatively simple extensions to simple statistical concepts such as linear 
models and regression provide the foundation for basic spatial statistical analysis.  
 
Although not universally true, objects in close proximity are more alike. Consequently, 
one must include the effects of spatial proximity when performing statistical inference 
on such processes, or at least show that there is no need to do so. Including these spatial 
effects is important for efficient estimation of parameters, prediction, and the design of 
sampling networks. As a simple illustration, consider some spatial process, denoted by 
Y , at three locations, A B C, ,  such that A  and B  are very close together in space (i.e., 
adjacent plots in a field trial) and C  is widely separated from both A  and B . Assume 
the spatial process has zero mean and variance 2σ  at all spatial locations. It is then the 
case that  
 

2var[ ( ) ( )] 2 2cov[ ( ) ( )]Y A Y B Y A Y Bσ− = − ,  and  
2var[ ( ) ( )] 2 2cov[ ( ) ( )]Y A Y C Y A Y Cσ− = − , .  

 
If the covariance is positive and decreases with distance (that is, things close together 
are more alike), then cov[ ( ) ( )] cov[ ( ) ( )]Y A Y B Y A Y C, > ,  and 
thus var[ ( ) ( )] var[ ( ) ( )]Y A Y B Y A Y C− < − . Clearly, inference on the differences should 
include the effects of the spatial dependence. Such effects of spatial dependence in 
statistical inference have been known for a very long time. In fact, one of the arguments 
in favor of randomization for agricultural field trials is to mitigate the effects of such 
dependence. However, in many environmental and biological applications, one typically 
considers observational studies in which randomization is not a viable option. It is in 
these situations that one seeks to model the spatial dependence through the use of 
random field models.  
 
The later twentieth century and beginning of the twenty-first century has seen a 
tremendous growth in spatial statistical methodological development and application. 
This is primarily a function of the rapid progression of computational technology, 
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hardware, software and algorithms, and the need to solve challenging problems. The 
corresponding propagation of Bayesian methodology into mainstream statistics has been 
responsible for a sizeable portion of this development. Although there is still an 
undercurrent of tension between traditional frequentist proponents and Bayesian 
proponents, most practicing statisticians recognize the advantages and disadvantages of 
both views and approach spatial modeling from a pragmatic perspective, using the 
methodology appropriate for the given problem. Thus, in this chapter, we consider a 
broad range of methodologies from both traditional and Bayesian perspectives.  
 
Kriging and its derivatives constitute the most common class of spatial models used in 
diverse disciplines such as crop and soil science, geology, atmospheric science, and 
more recently in ecology and the biological sciences. Many software packages have 
“kriging” routines, and kriging is the core of many contemporary graduate level courses 
on spatial statistics. Much of the terminology common in spatial statistics today first 
arose within the field of geostatistics.  
 
Kriging can be viewed as arising under a linear mixed model (LMM). LMMs have been 
intensively studied and have a well developed theory. Thus, understanding the basics of 
conventional mixed models is helpful for understanding spatial statistical models. In 
fact, it can be argued that the LMM perspective is natural since LMMs are widely used 
in biological, medical and epidemiological fields, particular in relation to longitudinal 
data, of which spatial data are a special case. When viewed from an LMM perspective, 
estimation and prediction of spatially correlated processes poses no additional 
complexity beyond that required for LMMs. This is in contrast to conventional 
developments of kriging, where these problems were derived independently, essentially 
outside of the field of statistics. Because of this, many ad hoc procedures exist within 
the geostatistical paradigm, and the terminology is cluttered with jargon. Conversely, 
linear mixed models are well-known to both statisticians and practitioners of statistics 
alike, and so this formulation is often simpler as an introductory framework. An 
additional benefit of the LMM development is that extension to non-Gaussian problems 
is straightforward by way of the generalized linear mixed model (GLMM) extension of 
the normal, linear case. The discipline of disease mapping makes widespread use of 
GLMMs within a spatial modeling context.  
 
This chapter focuses on Gaussian spatial models as considered from a LMM approach, 
along with classical and Bayesian estimation issues. An important part of such modeling 
is related to the specification of realistic covariance structures, and so a discussion of 
this topic is included as well. We consider extensions to non-Gaussian spatial models, 
as well as multivariate and spatio-temporal processes. Finally, we present some topics in 
which there is substantial current research interest. Computational issues will be 
discussed as they arise.  
 
2. Gaussian Random Process Models 
 
Consider a spatial process ( )Y s  where D∈s , some domain in d -dimensional 
Euclidean space. In this chapter, we will only consider two-dimensional spatial 
processes. Furthermore, we assume that the process ( )Y s  has a Gaussian (normal) 
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distribution with mean ( )μ s  and is correlated so that ( ) cov[ ( ) ( )]yc Y Y′ ′, ≡ ,s s s s  for some 
D′, ∈s s  where ′≠s s . We refer to such a process as a Gaussian random process or 

Gaussian random field.  

2.1. Linear Mixed Model Framework 

The classical linear mixed model generalizes the traditional linear model to include 
random effects. In the present context, we will equate the random effect to a correlated 
spatial process. A common statement of the LMM is:  
 

β α= + +y X H ε                                                                               (1) 
 
where y  is an 1n×  vector of responses, X  and H  are known matrices of independent, 
explanatory, or regression variables ( n p×  and n q× , respectively, β  is a 1p×  vector 
of regression coefficients or fixed effects, and α  and ε  are 1q×  and 1n×  random 
vectors, respectively). Typically, columns of H  are indicator variables, so that each 
observation is associated with a particular element of α . The usual assumption on these 
random effects is multivariate normality:  
 

00
N

00
αα ⎛ ⎞⎡ ⎤

⎜ ⎟⎢ ⎥
⎜ ⎟⎢ ⎥⎜ ⎟⎣ ⎦⎝ ⎠

Σ⎡ ⎤ ⎡ ⎤
, .⎢ ⎥ ⎢ ⎥ Σ⎣ ⎦ ⎣ ⎦

∼
εε

 

 
In spatial statistics one often finds the use of Gau (Gaussian) for N (normal)) 
 
In many statistical problems, including spatial statistics, one often assumes 
independence of the random errors, in which case 2

n nσ ×Σ = Iε ε , where n n×I  is the n -

dimensional identity matrix. The variance component 2σε  is measurement error 
variance, and may additionally include effects of small-scale spatial variability – that is, 
anything unexplained by the random effect. In the field of geostatistics, 2σε  is called the 
“nugget effect”.  
 
The application of this model to spatial settings is straightforward. Suppose that the 
response vector is spatially indexed, so that 1[ ( ) ( )]ny … y ′= , ,y s s  for spatial locations 

1i i … n, = , ,s . Let the elements of α  represent “spatial effects”, then αΣ  is a q q×  
spatial covariance matrix where q  is the number of spatial locations. In many spatial 
statistical problems q n= ; i.e., there is a single response observation at each site, in 
which case n n×=H I . This is the essence of the model used in conventional kriging 
applications. The other consideration in the context of spatial applications is that 
prediction of “unobserved” data is of primary interest. This is in contrast to most mixed-
model applications, where the primary interest is in estimation of the vectors β , 

perhaps the variance components 2
ασ  and 2σε , and, to a lesser extent, α .  

 
For the model (1) note that N(0 )αα ,Σ∼  and N(0 ),Σ∼ εε . One can think of this model 
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hierarchically, as  
 

N( )α β α| + ,Σy X H∼ ε                                                                   (2) 
N(0 )αα ,Σ .∼                                                                                       (3) 

 
The joint distribution is given by ( ) ( ) ( )f f fα α α, = |y y . One can obtain the marginal 
distribution for y  by integrating out the random effects, ( ) ( ) ( )f f f dα α α= |∫y y , 
which is easily shown in this case to be  
 

N( )αβ,Σ + Σ .y X∼ ε                                                                           (4) 
 
Thus, the marginal model (4) follows from the hierarchical formulation (2) and (3). In 
traditional LMM applications (e.g., longitudinal analysis) it is often convenient (and 
arguably more general) to proceed in terms of the marginal model, without the need for 
specific inference or estimation concerning the random effects. That is, one accounts for 
spatial dependence but is not interested in the underlying process that generates such 
dependence. However, for most traditional spatial applications, one is interested in 
performing inference on the random effects (spatial process) and the hierarchical 
formulation is more appropriate.  
 
One might think of α  as discrete levels of a random factor, but it is more often 
regarded, in spatial problems, as a spatial random process. Instead of the discrete 
multivariate normal model specification given in (1), one might instead write 

( ) ( ) ( ) ( )j jjy x β α= + +∑s s s sε  and 2( ) N(0 )αα σ,s ∼ , with 
2cov[ ( ) ( )] ( )rα αα α σ′ ′, = ,s s s s , for some correlation function ()rα , thus relating observed 

“levels” of the random process y  with unobserved levels (those values which we wish 
to predict) of the spatial random effects process, a subtle but important aspect with 
regard to spatial problems. The distinction between the more traditional, vector 
representation (common in statistics), and the “process” representation (common in 
geosciences) is more a matter of tradition.  

2.2. Covariance models 

The essence of spatial statistics is spatial correlation, and consequently it is important to 
model this aspect of the problem adequately. Unfortunately, there are many limitations 
(having to do with both data and covariance models) which make this a difficult task. 
To guarantee that the covariance matrix is positive definite, the spatial covariance 
matrix αΣ  is assumed to be of some parametric form, indexed by the parameter θ  
(possibly a vector). To be more precise, the spatial covariance matrix is expressed as 

( )α θΣ . Much of the detail concerning implementation of contemporary spatial statistics 
focuses on the choice of the covariance function, and estimation of its parameters.  
 
The covariance function describes the spatial association between the random effect at 
any two locations in space, say s  and ′s :  
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cov[ ( ) ( )] ( )cαα α θ′ ′, = , ; .s s s s  

 
If the variance of α  is homogeneous, we may write 2( ) ( )c rα α ασ θ′ ′, = , ;s s s s  where 

()rα  is the correlation function, being scaled by the variance component 2
ασ . Since 

elements of α  are indexed by space, the covariance function allows one to “fill-in” the 
elements of ( )α θΣ . Thus, given cα , spatial parameters θ , and any two locations in 
space, s  and ′s  (sample locations, or not), the covariance between ( )α s  and ( )α ′s  may 
be determined.  
 
Typically, assumptions are imposed on the process to facilitate estimation of parameters 
(as will be discussed further below), but also because there is a severe shortage of more 
general covariance models. The two usual assumptions are second-order stationarity 
and isotropy, the former being translation invariance of the second-moment structure of 
α , and the latter being rotation invariance. Normally the stationarity assumption would 
imply a similar constraint on the first moment structure, but we have assumed α  to 
have mean 0, accommodating any mean nonstationarity in βX . Thus, under these 
assumptions, the covariance between any two points is only a function of the distance 
separating them:  
 

2cov[ ( ) ( )] ( )rα αα α σ θ′ ′, = || − ||; ,s s s s  

 
where ′|| − ||s s  is the distance between points s  and ′s , say Euclidean, geographic 
distance, etc.. This simplified correlation structure conveniently dictates the covariance 
between observed and unobserved values of y  for which predictions are desired, a 
quantity required to formulate the predictor (discussed below). A common correlation 
model is the exponential model given by  
 

( ) exp( )rα θ
θ

′− || − ||′|| − ||; = .
s ss s  

 
There are many other models in widespread use.  
 
In geostatistics, spatial modeling is often considered in terms of the variogram rather 
than the covariance. The variogram is an alternative description of spatial dependence 
and is defined as:  
 
2 ( ) var[ ( ) ( )]γ α α≡ + − ,h s h s                                                         (5) 
 
for all D, + ∈s s h , where D  is the spatial domain of interest and h  is some spatial lag. 
Note that the variogram must satisfy the condition of conditional-negative 
semidefiniteness to guarantee that all model-based variances are nonnegative. As with 
the covariance function, when the process is isotropic, the variogram is only a function 
of distance, so 2 ( ) 2 ( )γ γ= || ||h h . Under the condition (5) and if the mean is constant, 
the process is said to be intrinsically stationary. The class of processes that are second-
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order stationary are a subset of those that are intrinsically stationary. In fact, if the 
process is second-order stationary, then there is a simple relationship between the 
variogram and the covariance function, 2 ( ) 2[ (0) ( )]c cγ = −h h . In general, the condition 
of second-order stationarity is sufficient for most processes of concern to the biological 
and environmental sciences. Thus, the remainder of this chapter assumes second-order 
stationarity.  

2.3. Estimation and Prediction  

A common method of parameter estimation under the mixed model is maximum 
likelihood estimation from the marginal distribution of y . Under the simplifications 
discussed above, the marginal distribution of y  is:  
 

2 2N( )α θβ σ σ, + .y X R I∼ ε  

 
Letting λ  be the vector of second-moment parameters, 2 2( )ασ σ θ, ,ε , and setting 

2 2( ) α θλ σ σΣ = +R Iε , the log likelihood is:  
 

11 1( ) log( ( ) ) ( ) ( ) ( )
2 2

l β λ λ β λ β−′| , = − | Σ | − − Σ − .y y X y X  

 
To obtain parameter estimates for λ  we can maximize this marginal log-likelihood with 
respect to λ  and β . The likelihood is nonlinear in the parameters and thus must be 
maximized numerically. The use of MLEs in spatial problems has been questioned by 
some practitioners since MLEs are generally biased for the (co)variance parameters. 
Consequently, restricted maximum likelihood estimation (REML) is often 
recommended. This leads to less bias in plug-in kriging variances.  
If λ  is known, the MLE of β  is  
 

1 1 1ˆ [ ( ) ] ( )β λ λ− − −′= Σ Σ ,X X X y                                                      (6) 
 
the generalized least squares (GLS) estimate. In practice, one uses an estimate, say λ̂ , 
in place of λ  producing:  
 

1 1 1ˆ ˆ ˆ[ ( ) ] ( )β λ λ− − −′= Σ Σ .X X X y                                                      (7) 
 
Both estimation of the random effects (i.e., those which coincide with data locations), 
and prediction of “unobserved” random effects, is based on the Best Linear Unbiased 
Predictor (BLUP). One can derive the BLUP from several perspectives, including 
“distribution-free”, Bayesian, and multivariate normal methods. All of these derivations 
either implicitly or explicitly assume that only first and second moment properties of the 
underlying spatial distribution are sufficient to describe the distribution.  
 
For estimating a vector of random effects, say predα , which may include random effects 
corresponding to both sample locations and locations for which predictions are desired, 
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one must compute the quantities predcov[ ]α λαΩ = , ;  and pred predvar[ ]λα= ;Σ , which 
requires λ . The BLUP for known β  and λ  is 
  

1
predˆ ( ) ( )α λ β−= ΩΣ − .y X                                                               (8) 

 
When the components of the vector to be predicted are those random effects 
corresponding to data locations (i.e., pred αα = ), then 2

α θσΩ = R . In general, the 
prediction variance is  
 

1
predpred predˆvar( ) ( )α α λ − ′− = −ΩΣ Ω .Σ                                       (9) 

 
Although the expressions for the predictor and its variance for known β  and λ  are 
convenient, these quantities are seldom known. In that case, one may plug β  into (8), 
and it remains the BLUP; the prediction variance must be adjusted accordingly to 
account for the uncertainty in estimation of β . See the references for details. 
Accounting for unknown λ  is much more difficult. In practice, the estimates obtained 
from MLE (or other approaches) are simply plugged into the known-λ  expressions. 
This is the so-called “plug-in” predictor, or the estimated BLUP (EBLUP). 
Unfortunately, the variance computed from an analogous plug-in procedure is not, in 
fact, the correct variance of the EBLUP. In that case, the spatial prediction variance (9) 
underestimates the true variability in the predictions since it does not take into account 
the variability introduced by the estimation of the (co)variance parameters. Since the 
predictor depends on λ  in a nonlinear fashion, accounting for uncertainty due to its 
estimation is problematic. Various approaches have been suggested to mitigate this 
concern (bootstrapping, empirical Bayesian, and Bayesian methods).  
- 
- 
- 
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