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Summary 
 
Fundamental concepts and terminologies in functional analysis are explained.  In 
addition, some typical function spaces are listed with their basic properties. Knowledge 
of linear algebras will help in the understanding of this chapter.  A nontrivial function 
space is an infinite dimensional vector space with a geometric structure in various types.  
Functional analysis offers tools and terminologies to treat such function spaces 
systematically.  Knowledge of the general topology is partially assumed to read some 
subsections.  In terms of nets, a generalized concept of sequences, it may be possible to 
feel at least a flavor of the present subjects by making analogy to the known case.  A 
basic knowledge of the Lebesgue integration theory and the complex function theory 
may be helpful for some parts. 

 



UNESCO – 
EOLS

S

SAMPLE
 C

HAPTERS

MATHEMATICS: CONCEPTS, AND FOUNDATIONS – Vol. II - Functional Analysis and Function Spaces - Mikihiro 
HAYASHI  

©Encyclopedia of Life Support Systems (EOLSS) 

1. Introduction 
 

 In analysis there are two standard methods to investigate functions. (A function always 
means a real–valued or a complex–valued function in this chapter.) The first method is 
classical.  One investigates properties of functions individually by calculating values, 
derivatives, integrals, or by drawing graphs.  The second method is modern.  One 
considers a set of functions, regards each function as a point in the set, and investigates 
geometric and algebraic structures of the set.  The latter method is called functional 
analysis, while the former method is called classical analysis. 

 
A set of functions under consideration is called a function space.  A mapping from a 
function space to a function space is called an operator.  A function on a function space 
is called a functional.  For example, the mapping which relates a function x to its 
derivative /d dtx is an operator and the function which relates a function x to a definite 

integral ( )b

a
x t dt∫ is a functional. It is a major subject in functional analysis to 

investigate properties of operators, functionals and function spaces. 
 

A primitive idea on the use of functional analysis is easy to understand by the following 
example. 

 
Volterra’s integral equation:  Find an unknown function ( )x s satisfying    

( ) ( ) ( ) ( ),
s

a
K s t t dt= − ∫y s x s x   (1) 

 
for a given continuous function ( )y s , where ( ),K s t  is a continuous function of two 
variables s  and t for .a t s b≤ ≤ ≤ Let X  be the set of all continuous functions on an 
interval [ ],a b and define two operatorsT  and I  from X  to itself by 

( )( ) ( ) ( ),
s

a
T s K s t t dt= ∫x x and ( )( ) ( )I s s=x x , respectively.  Here the notation Tx and 

Ix represents functions of s given by the right hand side of the equations on the one 
hand, and represents the idea that the function x is mapped by T and I to the functions 
Tx  and Ix  respectively, on the other.  Eq.(1) is then written as ( )I T I T= − = −y x x x.  

If I T−  admits an inverse mapping ( ) 1 ,I T −−  the equation has a unique 

solution ( ) 1I T −= −x y . Consider the identity: 
                       
( )( ) ( )2 1...I T I T T T I T−− + + + + = −n ny y   (2) 

 
where ( )1T T T −=n ny y . If the series  

                                 
T T= + + + +" "nx y y y   (3) 
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converges, then ( )0T →ny n→ ∞ and Eq.(2) yields 
 

( ) 1 2 .nI T I T T T−− = + + + + +" "   (4) 
 
The solution of (1) is given by the series (3). 

 
The above argument contains an ambiguity; it is not properly mentioned in what fashion 
the series (3) and (4) converge.  (Meanwhile, an argument with ambiguities like above 
is often useful as a heuristic method).  There are many different ways of convergence 
considered for sequences of functions and several types for sequences of operators.  As 
for the series (3), its uniform convergence follows from the inequality. 

                              

( )( ) ( ) ( ) ,
!

nnM s a
T s L a s b

−
≤ ≤ ≤nx

n
  (5) 

 
where M and L are constants with ( ),K s t M≤ and ( )s L≤g  for .a t s b≤ ≤ ≤  The 
inequality (5) itself is proved by means of classical analysis. (It is worthwhile to note 
that the classical analysis is lying in the background of functional analysis and often 
playing a crucial role at a key point.) 

 
Analysis becomes more powerful if limits of functions are realized as elements in a 
function space under consideration.  Even if one starts from a sequence of polynomials, 
different ways of convergence lead to different function spaces. In some cases, the 
notion of functions has to be generalized in order to realize limit elements of functions. 
Some function spaces were introduced to define an operator on it; most operators 
appearing in applications require their own function spaces, on which the operator 
behaves properly.  Some function spaces, defined on a set S of their variables, are 
utilized to investigate the structure of the base space S; the geometric structure of the 
base space S reflects itself to certain types of function spaces.  Some function spaces are 
studied to investigate functions themselves; certain properties of functions appear in 
relations with other functions. This is why we have a variety of function spaces. It is 
impossible to list all useful function spaces in this chapter; only a very limited number 
of typical function spaces are listed in Section 5 

 
In order to study various function spaces and operators on them systematically, abstract 
treatments have been developed and are systematized as the theory of functional 
analysis.  Function spaces form an infinite dimensional vector space, in which a way of 
convergence is defined.  Nontriviality in functional analysis shows itself when one 
considers convergence in an infinite dimensional vector space.  When a vector space is 
finite dimensional, the subjects reduce to the theory of linear algebras; a (linear) 
operator on it is nothing but a matrix. Basic concepts in functional analysis are treated in 
Sections 3 and 4. 

 
Around the beginning of the twentieth century the theory of functional analysis began to 
be developed by V.Volterra, I Fredholm, and some others in connection with the study 
of integral equations.  Fundamental concepts in functional analysis have been founded 
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by D. Hilbert, F. Riesz, S. Banach, J. von Neumann, the Bourbaki group, I.M. Gelfand, 
and others in the first half of the twentieth century. Functional analysis is now 
developing in connection with many areas of mathematics, such as functional equations, 
the operator theory, Fourier analysis, the complex function theory, etc. 

 
2. Function Spaces and Some Examples 

 
Let S  be a nonempty set.  Denote by ( )SF  the set of all scalar–valued functions on S , 
where the scalars are either the real numbers or complex numbers. 

 
For functionsx,y  on S  and a scalar ,c  new functions cx  andx y+  on S are defined by 
the pointwise operations ( )( ) ( ):c s c=x x s  and ( )( ) :sx y+  ( ) ( )( ).s s s S= +x y ∈  The 

set ( )SF � forms a vector space with these two pointwise operations. In this chapter, a 

vector subspace of ( )SF �will be called a function space on S . For instance, the set 

( )SFB of all bounded functions on S is a function space; a function x is said to be 

bounded if ( )sups SS s∈=x x is finite.  In other words, for each function x in this 

function space, there is an upper bound K for its absolute value, satisfying  ( )s K≤x   

for all s S∈ where K depends onx .  The quantity Sx is called the sup-norm (or 
supremum norm or uniform norm) of the functionx  on the set S. A subset X  of a 
vector space is a vector subspace if (and only if) X  is closed under two operations, 
addition and scalar multiplication, i.e., cx andx y+  belong to X  for any , Xx y ∈ and 
any scalar c .  (It is much easier to show a subset X of ( )F S  to be a vector subspace 
than to show directly that X  is a vector space by checking all the axioms of a vector 
space.) 

 
Let { }1, 2, , .S N= …  Identifying a function x  on S  with a point 

( ) ( ) ( )( )1 , 2 , , N…x x x in NR ( )NC , the N -dimensional real (complex) space NR  

( )NC may be regarded as the function space { }( )1, 2, , N…F . Similarly, a function x  on 

the set = {1, 2, 3, } N … can be identified with the sequence ( ) ( ) ( )( )1 , 2 , 3 , .x x x …  

Thus, the set of all sequences of scalars may be regarded as the function space ( ).NF   
 

Here are some examples of function spaces on an interval J in the real line R with 
positive or infinite length. 
 
( ) :JC the set of all continuous functions on .J  

 
( )JCB the set of all bounded continuous functions on J . 
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( )( )0p J pL ∞< < : the set of all measurable functionsx  on J  such that 

( )
J

s ds∫
p

x ∞.<  

 
( ) :JL∞ the set of all measurable functionsx  on J such that ( )x s is essentially bounded 

(i.e, there is a constant M such that ( )s M≤x holds almost everywhere for s J∈ ). 
 

With the convention that two functions are equivalent (and identified with each other) if 
they are equal almost everywhere, ( )L Jp denotes the set of equivalence classes of 

functions in ( )( )0J ≤Lp ∞<p .  (In some literature, the symbol Lp is used to represent 

both the function space Lp and the set pL of equivalence classes.) 
 

3. Basic Concepts in Functional Analysis 
       
3.1. Normed spaces and Banach Spaces 
        
Let X be a real or complex vector space. A real–valued function x x→ on X is called 
a norm on ,X  if it satisfies the following four properties for any elementsx,y  in X  and 
any scalar c :  i) 0;≥x ii)  0=x if only if 0;=x  iii) ;c c=x x iv)  

.+ ≤ +x y x y A vector space X equipped with a norm is called a normed vector 

space.  The quantity x  is called the norm of the elementx .  The norm −x y  of 
−x y is called the distance between two elements x and y.  Replacingx,y in the 

inequality (iv) by ,z z− −x y , respectively, it follows that 
,z z− ≤ − + −x y x y which is the triangle inequality. 

 

A sequence 1 2 3, , ,..., ,...nx x x x is denoted by { } 1=n n
x

∞
or{ }nx .  A sequence { }nx in a 

normed vector space X is said to converge (or more precisely, converge strongly) to 
an element x if the sequence { }−nx x of real numbers converges to zero; this is 

written notationally as lim =nx x (or lims − =nx x ) and the elementx  is said to be the 

limit (or strong limit) of the sequence{ }nx . The modifier ‘strongly’ or ‘strong’ may be 

omitted unless one needs to distinguish the convergence in the above sense from others.  
(In functional analysis, several types of convergence are introduced in various ways.  
See Section 4.2) 

 
 A subset of E or X is said to be closed if every limit of converging sequence in E  
belongs to E . A subset of a normed vector space X is said to be bounded if it is 
contained in a ball R≤x of a finite radius R .  A subset K of a normed vector space 

X is compact if and only if every sequence { }nx in K has a converging subsequence 
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and its limit point is in K .  Every compact subset of a normed vector space is closed and 
bounded. If a closed ball { }( ): 0X R R≤x x∈ >  is compact in a normed vector space 

,X then X is the finite dimensional. In particular, the Heine-Borel theorem stating that 
every bounded closed subset is compact is no longer true for an infinite dimensional 
normed vector space .X  
 
If a sequence −m nx x tends to zero as both m  and n go to infinity, then the sequence 

{ }nx is called a Cauchy sequence. A converging sequence is a Cauchy sequence. A 

normed vector space is said to be complete if every Cauchy sequence converges.  A 
complete normed vector space is called a Banach Space. 

 
Let X and Y be normed vector spaces. The direct product 
X × =Y : ( ){ }, : ,X Yx y x y∈ ∈ of X and Y forms a normed vector space with the 

addition  ( ) ( ) ( ), , : ,′ ′ ′ ′+ = + +x y x y x x y y  the scalar multiplication 

( ) ( ), : ,c c c=x y x y and the norm ( ), : .= +x y x y  If X and Y are Banach spaces, then 
X ×Y is also a Banach space.  If N is a closed vector subspace N of X , then the 
quotient space / :X N = { }:N X+x x ∈ is a normed vector space with the addition 

( ) ( ) ( ): ,N N N+ + + = + +x y x y  the scalar multiplication ( ) ( ):c N c N+ = +x x and the 

norm { }: inf : ,N z z N+ = +x x ∈  where { }:z z N= +x N x ∈+ : , called the coset 
containing the elementx . If X is a Banach space, then /X N is also a Banach space. 

 
The following vector spaces with the indicated norms are Banach spaces. 

 

( )
1

22 2
1 1, : , , , .N N

N N
⎛ ⎞= + + =⎜ ⎟
⎝ ⎠

" …x x x x x xR C  

 

( ) ( ){ } ( ) ( )
1

1 2 3 1 2 31 1,... : 1 : , , , ,... .j jj j x= =
⎛ ⎞= ≤ ∞ = =⎜ ⎟
⎝ ⎠∑ ∑A

pp pp
px ,x ,x x p x x x x x

∞ ∞∞< <

 

( ) ( ) { }{ 1 2 3, ,... : j=A x ,x x x∞ is a bounded sequence 

}: ( )1 2 3,sup , , , .j j= = …x x x x x x∞    

 

( ) ( ){ } ( )0 1 2 3 1 2 3, , ,... : lim 0 : sup , , , ,... .j j j jc →= = = =x x x x x x x x x x∞ ∞  

 
( ) ( ) { }{ 1 2 3, , ,... : jc = x x x x is a converging sequence}:  

( )1 2 3sup , , , ,... .j j= =x x x x x x∞  
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( ) ( ): sup ,s JJJ s∈=CB x x the sup-norm on  a nonempty interval J . 

( ) ( ) ( )( )
1

1 : .
J

L J s ds≤ = ∫
ppp

pp x x∞<  

( ) ( ) ( ){: ess-sup inf :s JL J s M s M∈= = ≤x x x∞
∞  (almost everywhere)}. This 

norm is called the essential supermum norm   
 

A normed vector space X is said to be separable if X has a dense countable subset 
(i.e., a countable subset { }1 2, ,...x x such that every element of X is the limit of some 

subsequence of{ }nx ). The Banach spaces 

( ) ( ) ( ) ( )01 , , ,p c c≤A p ∞< and ( ) ( )1L J p≤p ∞< are separable, and the Banach 

spaces ( A∞ ) and ( )L J∞ are not separable.  The Banach space ( )JCB  is separable if 

J is a bounded closed interval [ ] { }, : ,a b t a t b= ≤ ≤ and ( )JCB  is not separable if J is 
any other type of nonempty interval. 

 
A completion of X� of a normed vector space X is a Banach space such that X is 
identified with a dense subspace of X� . Such a completion X� always exists and is 
uniquely determined by X up to isometric isomorphisms of X� (see Section 3.3 for 
‘isometric isomorphism’). In many cases, the completion of a function space turns out 
to be a function space.  In a general theory of completion, however, the elements of 
completion X� are idealistic; they are defined as equivalence classes of Cauchy 
sequences.  Therefore, one may often need another theory of its own in order to describe 
the elements of completion on a substantial way.   For instance, the completion of the 
function space [ ]( )0,1C  with the norm px  is the Banach space [ ]( )0,1 ;Lp  the Lebesgue 

integration theory is used to describe the elements of [ ]( )0,1 .Lp  
 

3.2. Hilbert Spaces 
 
An inner product on a vector space H  is a scalar–valued function ( )x,y  ofx  and y in 

H with the following five properties: i)  ( ) 0;  ii)≥x,x ( ) 0=x,x  if only if 0=x ; iii) 

( ) ( )c c=x,y x,y ( c : any scalar); iv) ( ) ( ) ( )( )=x y,z x,z y,z x,y,z ∈+ + Η ); v) 

( ) ( ) ( ) ( )(, , , ,= =x y y x x y y x if the scalars are real). A vector space H equipped with an 

inner product is called an inner product space (or metric vector space or pre-Hilbert 
space).  An inner product space H  is a normed vector space with a norm defined by 

( ): ,=x x x and the Cauchy-Schwarz inequality ( ), ≤x y x y is valid.  An inner 
product space H  is called a Hilbert space if H is complete as a normed vector space.  
The completion of an inner product space as a normed space is a Hilbert space; more 
precisely, the inner product on a pre-Hilbert space can be uniquely extended to its 
completion. The norm ( ): ,=x x x satisfies the equality 
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2 2 22 2 .+ + − = +x y x y x y   (6) 
 
Conversely, a normed vector space X can be made an inner product space with 

( ),x x x= if only if its norm x satisfies the equality (6); in this case, an inner 

product is defined by ( ), :=x y  ( )2 2 4+ − −x y x y /  if the scalars are real and by 

( ) ( )2 2 2 2, : 4i i i i= + − − + + − −x y x y x y x y x y /  if the scalars are complex. 

Let H be a Hilbert space. Two elements x andy  in H are said to be mutually 
orthogonal if ( ) 0=x,y . A family { }ie  of elements in H is said to be orthonormal set 

(or system) if 1ie = and ( ), 0i je e = for i j≠ .  Any orthonormal set { }ie  satisfies 

Bessel’s inequality ( ) 22 , .iix x e≥∑  A maximal orthonormal set { }ie is said to be 
complete.  A complete orthonormal set is also called an orthonormal basis.  For an 
orthonormal set{ }ie , the following three properties are mutually equivalent; i) { }ie is 

complete; ii) Parseval’s equality ( ) 22 , ii e=∑x x  holds for every x in ,H ; iii) 

Fourier expansion ( ), i ii e e=∑x x holds for everyx  in H .  (The number of the 

elements in ie can be uncoutably infinite.  Even in that case, at most a countable number 
of nonzero terms remain in the sums of Parsevel’s equality and Fourier expansion, and 
the sums converge.)  if { }if is another orthonormal basis, then there is a one-to–one 

correspondence between{ }ie and{ }if , i.e., any orthonormal basis of H consists of the 
same (cardinal) number of elements, and the (cardinal) number is called the dimension 
of Hilbert space H . (Note that the dimension of an infinite dimensional Hilbert space is 
different from the algebraic dimension as a vector space; the latter is the (cardinal) 
number of a basis of H as a vector space.  Two types of dimensions coincide with each 
other if one is finite) 
 
The following vector spaces are Hilbert spaces with the indicated inner products. 
 

NR or  ( ) 1 1: , .N
N N= + +"x y x y x yC  

( ) ( )2
1: , .j jj==∑A x y x y

∞  

 
( ) ( ) ( )2( ) : , .

J
L J s ds= ∫x y x y s                     
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