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Summary 
 
Different kind of natural time series as well as the methods (deterministic and 
stochastic) of their study are considered. Checking, interpolation, and approximation 
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can be useful for the experimental data assimilation. The equation series that are 
obtained as a result of calculations, e.g., as solutions of a finite – difference or as 
approximate solutions of a transcendental equation are considered, too. 
 
1. Introduction 
 
A set of numbers or vectors can be considered as a discrete times series if there is a 
“natural” ordering of the set: 1,..., Nx x< > . The series can describe very different 
processes: historical, physical, chemical, financial, biological etc. They can be arising in 
a process of some recurrent (iterative) calculations. The series may be obtained both as 
a result of reproducible or irreproducible experiments. Sometimes one tries to minimize 
the number of expensive measurements. Sometimes the series is a result of “free” 
computer experiments. 

 
 

Figure 1. Distribution of towns’ foundations years in Central Europe. Averaging by the 
period of 10 years. One can analyse the data, but a repetition of the experiment is 

impossible. 
 
The digital times series will be considered here, when a corresponding range of values 
(a phase space) is a finite-dimensional linear space, a manifold, or a grid. For instance, 
the phase space for the dynamics of a temperature and wind’s direction at a given point, 
the number of animals in a population are the half-line ,+  are the circumference 1S  
(or two-dimensional sphere 2S , if the direction of three-dimensional wind is 
considered), and + . 
 
There are more complex time series, when its elements jx  are some patterns (pictures, 
texts, speeches, music, etc). Usually one tries to imbed the ranged values into a suitable 
linear space. The impact of the imbedding is significant for the following recognition of 
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the patterns.  
 
Often the discrete time series is a restriction ( , , 1,..., )t n const n Nτ τ= = = ) of a 
continuous process, i.e., ( ), .x x t t= ∈  Then the value τ is equal to the period between 
observations of the process. If one chooses a coarser step: , /k M N kθ τ= = , then the 
thinning out series 1,..., My y< > , where ,i jy x j ik= =  or 

( ... ) / , ( 1) 1,i j ly x x k j k i l ki= + + = − + = , can have lost details of the original process 
with short period (high frequency). For instance, a mean temperature for a given month 
cannot describe the concrete temperature of tomorrow – one needs a study with another 
temporal scale. 
 
Sometimes an averaging of a time series can help to separate a useful signal from a 
significant noise. 
 

 
 

Figure 2.GPS (Global Position System) raw (the oscillations are the result of the 
“pendulum effect”, i.e., oscillation of the sound under a balloon) and the averaged (with 

respect to time) wind speed. The vector function v  is averaged here and its absolute 
value is shown (solid line). 

 
The period ( 1)T Nτ= − of measurements also limits the class of phenomena that are 
available for evaluations by the data.  
 
Example: During several decades the level (mean annual) of the Caspian Sea decreased. 
The Soviet government began a huge work for its stabilization. In particular, some years 
ago the Kara-Bogaz-Gol Bay (Garabogazkol Aylagy) was separated from the sea by a 
dam to reduce the surface evaporation of the Sea. However, the level began to increase 
before the principal (and very expensive) works started, and the coastlanders had big 
problems with the flooding. Perhaps, the period of the sea level observations was not 
sufficient. 
 
Another variant of a time series jt  is composed from instants of some events, e.g., 
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hurricanes in an area. Then the interval 1j jt t+ −  strongly depends on j and they are 
subjects of investigations. 
 
Let the times series ( )x n  describe a process, where n  is a discrete analogue of the time, 
x  is a scalar variable or a vector, real or complex. 
 
To describe shortly (and therefore, coarsely) the information from a long time series one 
can construct its mean value and the frequencies of various values.  
 
Windroses cannot inform about possible scenario of the wind’s dynamics and moreover 
about physical reasons of the statistics. However, it can be useful for a practical activity 
(e.g., for a building) in the corresponding region as well as for a verification of the 
models of the atmospheric circulation. 

 
 

Figure 3. Two versions of a windrose are drawn. One can understand from the lower 
windrose relative frequencies of winds of any compass point (calm is excluded). On the 
upper windrose both the length of arrows and the values in the circles in every compass 

points (calm is taken into account here). The numbers of small lines mean the mean 
velocities (m/sec) for winds of a given compass point. Thus, one can determine, e.g., 
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where and on what length shifts a particle of air during one hour over the region, season 
etc., for which the rose-wind was evaluated. For instance, according to the upper 

windrose, north-east is rarer than south-west, but stronger. 
 
The Maunder’s butterfly is a more complex statistical description. The color on Figure 
4 describes the density of solar spots as a function of the time and the latitude. One can 
see here not only a periodicity with respect to time. In the beginning of a cycle the spots 
arise about 35  and then their maxima (north and south) move to the equator. Thus, the 
time series in the example takes its values in the space of distributions along latitude. 

 
 

Figure 4. The Maunder’s butterfly. The color characterizes the density and intensity of 
solar spots as a function of time and latitude. 

 
One can verify modern and future magnetohydrodynamic models: are they generating 
the statistical picture or not ? 
 
2. Finite-difference Equations  
 
The processes ( )x n  can informally be divided as: i) closed; ii) unclosed. 
 
i) There is a function 1( , ,..., )mf f n z z=  such that for any n  
 

( ) ( , ( 1),..., ( )).x n f n x n x n m= − −  (1) 
 
The formula (1) can be considered as a m − th order finite-difference ordinary 
equation (or a system, if x  and f are vectors). It is called autonomous if the function 
f  does not depend on n , and linear, if the function f is linear with respect to any 

arguments 1,..., mz z . The equation can be rewritten as a first order finite-difference m-th 
order system 
 

( ) ( , ( 1));y n F n y n= −                     (2) 
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where ( ) ( ), ( 1),..., ( 1) ; , ( 1),..., ( 1) .y n x n x n x n m F f x n x n m=< − − + > =< − − + >       

2.1 Linear FDE 
 
Example: The Fibonacci (XIII century; his another name is Leonardo from Pisa) 
numbers are obtained according to the formula 
 

( ) ( 1) ( 2),x n x n x n= − + −                              (3) 
 
where (0) 1, (1) 1.x x= =  Then (2) 2, (3) 3, (4) 5, (5) 8x x x x= = = =  etc. Eq. (3) is 
autonomous and linear, too. Here 2m = .  
 
In the general case m  given values (0), (1),..., ( 1)x x x m−  fix a unique solution of Eq. 
(1). 
 
The general solution of (3) can be represented in the form 1 1 2 2

n nC Cλ λ+ , where λ can be 
computed as roots of the characteristic (for Eq.(2)) quadratic equation 2 1λ λ= + , i.e., 

1,2 0.5 5 / 4λ = ± .  
 

For the given initial data (0) 1, (1) 1x x= =  the constants are 2 1
1 2

1 2 1 2

1 1, .C Cλ λ
λ λ λ λ
− −

= =
− −

 

 
The general solution of a linear m -th order homogeneous finite-difference equation 
with constant coefficients 
 

0 1 0( ) ( 1) ... ( ) 0, , 0m ma x n a x n a x n m a a+ − + + − = ≠ ,                         (4) 
 
can be represented in the form of a linear combination of basic solutions of (4):  
 

1

,
m

n
j j

j

C λ
=
∑  if the roots jλ of the algebraic characteristic equation for (4): 

 
1

0 1 ... 0m m
ma a aλ λ −+ + + =  

 

are not multiple, and in the form ( 1)

1 1
,

jpd
i n

ji j
j i

C n λ−

= =
∑ ∑  otherwise. Here jp  is the 

multiplicity of the root jλ , jC  and jiC  are arbitrary constants. The constants can be 
determined, if initial values (0),..., ( 1)x x m −  are given. 
 
ii) A non-homogeneous linear finite-difference equation 
 

0 1( ) ( 1) ... ( ) ( )ma x n a x n a x n m nϕ+ − + + − =                                                  (5) 
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gives us a simplest example of a unclosed process; ( )nϕ  is a forcing at t nτ= . The 

general solution of Eq. (5) is ( 1)

1 1
( ) ,

jpd
i n

ji j
j i

X n C n λ−

= =

+∑ ∑  where ( )X n  is a partial solution 

of (5). It can be represented via a Green function: 
 

( ) ( , ) ( )
j

X n K n j jϕ
∞

=−∞

= ∑ , 

 
where ( , )K n j  can be represented explicitly via independent solutions of Eq.(4); if the 
coefficients ka  are not depending on n , then (| |)K K n j= − .  
 
2.2 Boundary Value Problems  
 
If instead of initial conditions ( (0),..., ( 1)x x m< − >  for Eq. (1) or (0)y  for (2)) some 
boundary conditions are given, e.g., (0),..., ( ), ( ),x x k x N k< + ..., ( 2)x N m+ − > , N>1, 
then the algebraic linear system on the unknown coefficients jiC , may be singular. 
However, in some important cases its non-singularity can be proved. 
 
- 
- 
- 
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