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Summary 
 
We propose an elementary introduction to the finite volume method in the context of gas 
dynamics conservation laws. Our approach is founded on the advection equation, the 
exact integration of the associated Cauchy problem, and the so-called upwind scheme in 
one space dimension. It is then extended in three directions: hyperbolic linear systems 
and particularly the system of acoustics, gas dynamics with the help of the Roe matrix 
and two space dimensions by following the approach proposed by Van Leer. A special 
emphasis on boundary conditions is proposed all along the text.  
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1. Advection Equation and Method of Characteristics 
 
1.1. Advection Equation. 
 
We consider a given real numbera >0  and we wish to solve the so called advection 
equation of unknown function ( )u x,t : 
 

0, 0,a t+ = ≥ \u u
x

t x
∂ ∂

∈ .
∂ ∂

 (0.0.1) 

 
We first look to the homogenous coherence of the different terms of equation (1.1.1) with 
reference to their dimensions. On the one hand, the ratio  u

t
∂
∂  is homogenous to the 

dimension [ ]u  of function i iu( , ) divided by the dimension [ ]t  of the time and we have: 
[ ]
[ ] .∼ uu

t t
∂
∂  On the other hand the expression a u

x
∂
∂  is homogenous to the dimension [ ]a of 

scalar a multiplied by the ratio [ ]
[ ]
u

x
and we have [ ] [ ]

[ ] .a a∼ uu
x x

∂
∂ From equation (1.1.1), the 

two previous terms u
t

∂
∂ and a u

x
∂
∂  have the same dimension and we deduce from the 

previous formulae the equality: [ ]
[ ]
[ ]

1 .a
t ∼ x Then we have established that the constant a is 

homogenous to a celerity: 
 

[ ] [ ]
[ ]

a ∼
x

t
 (0.0.1) 

 
The Cauchy problem for the model equation (1.1.1) is composed by the equation (1.1.1) 
itself and the following initial condition: 
 
( ) ( ) ,= \u x, u x x ∈00 ,  (0.0.2) 

 
where ( )\ 6 \x u x ∈0 is some given function. We observe that the solution of 
equation (1.1.1) is constant along the characteristic (straight) lines that satisfy the 
differential equation 
 
d .a=
x
td

 (0.0.3) 

 
Proposition 1.1. The solution is constant along the characteristic lines. 
 
Let 0 ≤ ≤ tλ  be some given parameter and ( )i iu ,  a solution of equation (1.1.1). Then 

function ( )i iu ,  is constant along the characteristic lines, i.e. 
 
( ) ( ) ,= ∀u x -a t - u x,t x,t,λ, λ λ.  (0.0.4) 
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The proof of Proposition 1.1. is obtained as follows. We consider a fixed point ( )x,t  in 
space-time [ )×\ ∞0,+  and the auxiliary function [ ] ( ) ( )0, .=6t v u x -a t -λ λ λ, λ  
We have, due to the usual chain rule of differentiation: 
 

( ) ( ) 0d a ∂ ∂⎡ ⎤= − − =⎢ ⎥∂ ∂⎣ ⎦
v u u

x -a t -
d x t

λ, λ
λ   if function ( ),i iu  is the solution of the advection 

equation (1.1.1). Then ( )v λ  does not depend on variable λ and we have in particular 

( ) ( ) ,=v vλ 0  which exactly expresses the relation (1.1.5). We have in particular for 

( ) ( ) ( )= =t : u x,t u x -at, u x -atλ= 00  as illustrated on Figure 1                                     
 

 
 

Figure 1: The solution ( )u x,t  of the advection equation is constant along the 
characteristic lines. 

 
1.2. Initial-Boundary Value Problems for the Advection Equation. 
 
The second step is concerned with the so-called initial–boundary value problem 
considered for x > 0  and t > 0  with some given initial condition ( )u x0  for t =0  

and a boundary condition ( )v t0  for x = 0 :  
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0, 0,a t∂ ∂
+ = >

∂ ∂
u u

x
t x

>0,    (equation)                                                                    

(1.2.1)    
 
( ) ( )0 ,=u x, u x x >0 0,          (initial condition) (1.2.2) 

 
( ) ( ) , 0,t= >u ,t v t00          (boundary condition). (1.2.3) 

 
Proposition  1.2.  Advection in the quadrant: x > 0  and 0.t >   
 

 

 
 

Figure 2: Initial- boundary value problem for the advection equation. 
 
We suppose that 0.a >  Then the solution of the advection equation (1.2.1) with the initial 
condition (1.2.2) and the boundary condition (1.2.3) is given by the relations  
 
( ) ( ) ,=u x,t u x -at x -at0 >0  (1.2.4) 

( ) ,⎛ ⎞= ⎜ ⎟
⎝ ⎠0
x

u x,t v t x -at<
a

− 0.  (1.2.5) 

The initial condition ( )iu0  is advected towards the space-time point ( )x,t  when  

x -at > 0  and the boundary condition ( )iv0  is activated forx -at< 0 . 
 
Proof of Proposition 1.2. 
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In order to solve the problem (1.2.1)-(1.2.3), we use the method of characteristics. We fix 
a point ( )x,t  of space-time domain that satisfies x t>0, >0  and we go upstream in time 
with the help of the characteristic line that goes through this point (see Figure 2): 
 
( ) ( )= =x x -a t t –λ λ, λ λ.  (1.2.6) 

 
First case: x –at >0.  When we take the particular value tλ=  in the previous relation 
(1.2.6), the particular point ( ) =y x t x – at=  on the axis of abscissa is strictly positive 

then the initial condition ( )u y0  is well defined. The solution ( ),i iu is constant on the 
characteristic line (see Proposition 1.1) that contains this particular point. Then relation 
(1.2.4) is established. 
 
Second case: x –at <0.  We consider the particular value x

aλ=  inside the expression 
(1.2.6). Then the corresponding foot of the characteristic belongs to the time axis: 

x
at – t –θ λ= =  and θ>0  due to the inequalities x at<  anda >0 . The solution is 

constant along the characteristic line going through this point and the relation (1.2.5) is 
established.              

 
Figure 3: Snap shot of the solution of the advection equation at time t T.=  
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In the particular case where value ( )u x0  is identically equal to zero, i.e., 

( ) 0,=0u x x >0,  (1.2.7) 
 
and if the boundary condition ( )v t0  is sinusoidal for time positive to fix the ideas, 
 

( ) ( )sin ,=v t t tω0 > 0,  (1.2.8) 
 
the solution of the advection equation in the domain x t>0, >0  via the relations (1.2.4) 
and (1.2.5) can be considered with the following view points. 
 
We take a snap shot of the solution ( )i iu ,  at a fixed time T >0.  We consider the partial 

function [ ) ( )6 \x u x,T∞ ∈0,+  and taking into account the relations (1.2.4), 
(1.2.5), (1.2.7) and (1.2.8), we have 
 

( ) ( )sin

0,

⎧ ⎡ ⎤⎪ ⎣ ⎦= ⎨
⎪⎩

x
aT – x aT

u x,T
x aT.

ω <

>
 (1.2.9) 

and this function is illustrated on Figure 3 (a). 
 
We fix a particular position X  in space and we look, as time is increasing, to the solution 
( )i iu , at this particular point. We show on Figure3b the function 

[ ] ( )0,+ 6 \t u X,t∞ ∈ and taking into account the relations (1.2.4), (1.2.5), (1,2,7) 
and (1.2.8), we have  
 

( ) ( )
0,

sin .

⎧⎪= ⎨ ⎡ ⎤⎪ ⎣ ⎦⎩

X
a

x X
a a

t
u X,t

T – tω

<

>
 (1.2.10) 

 
as shown in Figure 3(b) 
 
1.3. Inflow and Outflow for the Advection Equation. 
 
We still suppose that celerity a is  positive and we consider the resolution of the 
advection (1.2.1) in the space-time domain 
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Figure 4: Initial-boundary value problem for the advection equation with a >0 in the 
domain 0 x L< <  and t >0.  

 

 
 

Figure5: Initial-boundary value problem for the advection equation with a <0  in the 
domain 0 x L< <  and t >0.  

 
0 x L, t< < >0.  (1.3.1) 
 
The relations (1.2.4) and (1.2.5) can still be applied because the proof of Proposition 1.2 
remains unchanged in this particular case. As a consequence of the previous property, we 
remark that no boundary condition is necessary at the particular position  x L=  for 
solving the advection problem in the space-time domain defined in relations (1.3.1). The 
initial condition (1.2.2) has simply to be restricted in domain [ ]0, :L  
 
( ) ( ) , 0=u x, u x x L,00 < <  (1.3.2) 

and the boundary condition (1.2.3) at x = 0  remains unchanged : 
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( ) ( ) ,=u ,t v t t00 >0.  (1.3.3) 
 
The difference between point x = 0  and point x L=  for the resolution of the advection 
equation in space-time domain (1.3.1) is due to the fact that we choose an orientation of 
the characteristic lines Constantx –at =  associated to an increase for the time direction. 
With this choice of time direction, the characteristic lines enter inside the space-time 
domain (1.3.1) at x = 0  and they go outside atx L= . The boundary condition (1.3.3) is 
given at the input of the domain (see Figure 4) and atx L= , there is a free output from 
space time domain (1.3.1), without necessity to specify any numerical boundary 
condition. 
 
If we change the sign of celerity a , i.e., if we suppose now  
 
a <0,  (1.3.4) 
 
the above analysis remains unchanged, but the algebraic relations (1.2.4) and (1.2.5) have 
to be modified (see Figure 5). We still start from relation (1.1.5) that expresses that the 
solution of the advection equation (1.1.1) is constant along the characteristics lines. The 
foot of the characteristic line that contains the particular point ( )x,t  in space- time is 

either the point ( )y x –at,= 0  if x –at L,<  either the point ( )( )aL, t – x – Lθ= 1  if 

x –at L.>  In the first case, we have y>0  and θ<0  then the initial condition (1.3.2) is 
advected inside the domain (1.3.1) and we have : 
 
( ) ( ) ,=u x,t u x –at x –at L.0 <  (1.3.5) 

 
On the contrary , if x –at L,> we have y L>  and θ>0  then the boundary condition at 
=x L  that takes now the expression 

 
( ) ( ) ,= Lu L,t w t t >0,  (1.3.6) 

is advected inside the domain of study and we have: 
 

( ) ,⎛ ⎞= ⎜ ⎟
⎝ ⎠L
L x

u x,t w t – x –at L.
a a
+ >  (1.3.7) 

 
We have established the following 
 
Proposition  1.3.  Advection in the domain 0 x L,a< < <0.  
 
Under the hypothesis (1.3.4), the resolution of the advection equation (1.2.1) in the 
space-time domain (1.3.1) conducts to a well posed problem when we introduce the 
initial condition (1.3.2) on the interval [ ]0,L  and the boundary condition (1.3.6) at the 
input region located at x L= , without any boundary condition at the output located at 

0.=x  The solution of Problem (1.2.1), (1.3.2) and (1.3.6) is given by the relations (1.3.5) 
and (1.3.7). 
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