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Summary 
 
This is a survey of the various applications of Linear Programming to real-world 
decision making. It clarifies the essential mathematical terms and principal theoretical 
ideas in that mathematical field, and explains the most useful and efficient solution 
methods. 
 
Linear Programming is a mathematical concept used to simulate well-known, real-world 
situations, in which one wants to achieve a certain goal, but has to consider certain 
constraints while searching for the best possible decision. In Linear Programming, one 
assumes that the decisions have an impact both on the objective and on the restrictions 
which can be characterized by linear functions of the variables characterizing the 
decisions. Then, it is the task of mathematics to calculate the optimal values of the 
decision variables. We present the mathematical theories of linear inequalities, of 
polyhedra and of duality. Then, we show how they can be exploited to develop 
algorithms for solving such problems technically. The three methods that are discussed 
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are the Simplex Method, the Ellipsoid Method and Interior Point Methods. Their 
description finally leads to a comparison of their relative efficiencies and complexities. 
 
1. Linear Programming Problems 
 
1.1. Formulation of Linear Programming Problems 
 
In real life, most of our decisions about how to act or how to behave can be interpreted 
as attempts to optimize a certain goal or objective, without violating certain restrictions. 
The restrictions may be given by nature, people, our own will, or by existing rules. 
 
For mathematics, the challenge is to modelize and formalize this process 
mathematically, and to provide calculation methods for the determination of the best 
possible decision, if the objective and the restrictions are known. This mathematical 
field of developing tools for that purpose is of enormous importance in economy, 
engineering, administration, communication, and in all questions concerning 
technological development. 
 
The mathematical approach for solving such problems is as follows:  
 
Translate the possible decision set into a formal set of decision vectors with a finite 
number of decision variables. Then determine which of these decision-vectors are 
feasible under the given restrictions. After that, optimize, i.e., select the best decision-
vector from the feasible ones. The criterion for good, better and best comes from a 
mathematical function describing the specific quality of the decision in question. 
 
A formal characterization of the mathematical problem is: 
 

1

1 1 1 1

maximize ( ), a function :  defined on ( , ..., )
subject to ( ) , ..., ( ) ,   and ( ) , ..., ( ) .

n n T

m m l l

f x f x x x
g x g x h x h xγ γ κ κ

→ =
≤ ≤ = =

\ \   (1) 

  
Here f is the objective function and the gi(x)≤ γi respectively hj(x) =Kj are the (m+l) 
restrictions. The gi and the hj are called restriction functions. The values γi and Kj are 
called capacities. The components of the vector x are called decision variables. The set 
of feasible vectors x are denoted by X. So, we can formalize our problem to: 
 

1Find a specific vector ( , ..., )
such that ( ) ( ) for all 

n Tx x x X
f x f x x X

= ∈
≥ ∈

     (2) 

 
with X={x | g1(x) ≤ γ1, …, gm(x) ≤ γm and h1(x)=κ1, …, hl(x)=κl}. 
 
Depending on the mathematical features of those functions, these problems are 
classified into certain categories. 
 
What we have stated in (2) is a typical general Nonlinear Programming Problem (see 
Nonlinear Programming). 
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This survey is dedicated to a special form of that problem, namely, to Linear 
Programming Problems or Linear Programs (LP). 
 
Their general formulation is: 
 

1
1

1
1

1 1
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subject to , ..., resp. ,

and , ..., resp. ,

where , , , ..., , , ..., ,  ,  .

T

T T m
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   (3)  

 
Here the vectors T

ia  are the row vectors of the matrix ( ),m nA∈\  and the vectors T
id  

form the matrix D. 
 
Instead of the general functions f(x), gi (x) and hj(x), we now have linear functions cTx, 

T
ia x  and T

jd x . The functions c, ai, dj are the gradients of f, gi, hj. 
 
An important property of these problems lies in the fact that the variables may attain all 
real values and that they may vary continuously. Furthermore, the contribution of one 
variable to the objective function or to the restriction functions is proportional to its 
value in this specific feature of linearity. 
 
This is different in another type of problem, which will repeatedly be mentioned in this 
text as a closely related, but discretely structured type, namely the Integer Linear 
Optimization Problem (see Combinatorial Optimization and Integer Programming), 
which is: 
 

1
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1.2. Examples 
 
The variety of problems of the LP-type is overwhelming. Here we can only mention a 
few of the different applications, where linear optimization problems must be solved. 
 

1. Ingredient-Mixing 
 
Assume that a product is a collection of different ingredients I1, …, In. Then 
assume that the cost of each ingredient is different, and that the quality can be 
controlled by varying the weights of the n ingredients. A certain level of quality 
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shall be assured. This can be expressed by certain restrictions about the feasible 
mixtures. Then, it is our aim to minimize the costs by choosing the feasible 
mixture that has cheapest cost. 

 
2. Profit-Maximization in Investment 

 
Assume that certain investment facilities are available for a given amount of 
money. How shall we distribute our money in order to maximize our profit, 
when the investments are bounded, a certain level of risk shall not be exceeded, 
and a certain diversification is required? 

 
3. Maximizing the Delivered Amount 

Assume that several pipelines or cables are available to send goods, liquids, 
messages, or data from a sender to a receiver continuously. Which pipelines or 
cables, and to what extent shall they be used in order to maximize the amount 
that arrives at the receiver’s side per time unit? 

 
4. Production Planning 

 
Assume that the management of a company has to decide what quantities of 
certain products shall be manufactured. It is desirable to maximize the resulting 
profit without exceeding the capacity of available machine-time, labor force, 
financial credit, etc 

 
5. Transportation 

Assume that m stores with certain stockpiles have to deliver goods to k shops, 
which have specific demands. Further, suppose that a delivery from store i to 
shop j incurs costs of cij per unit. How shall the transport be organized? How 
much of the goods shall be delivered from store i to shop j in order to minimize 
the costs and to satisfy the demands of all the shops? 

 
These are typical linear optimization problems. However, linear optimization techniques 
not only help solve these pure applications of Linear Programming, they also serve as 
extremely helpful tools. They can be used as subroutines in the calculation of Integer 
Programming Problems, as for example: staff scheduling of airline flights, flight or 
travel scheduling, route-planning, packing problems, location problems, etc. In such 
cases, one uses Linear Programming repeatedly as a subroutine on subproblems where 
the integrity-condition is ignored. A systematic exploitation of the insights achieved in 
that way leads to the optimum integer point (see  Combinatorial Optimization and 
Integer Programming, Scheduling Problems, Routing Problems, Graph and Network 
Optimization). 
 
Following is  a typical numerically specified example problem: 
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This problem can equivalently be written as: 
 
maximize  subject to , where

1.03 0.12 0.06
0.05 1.06 0.06

0.011 0.03 1.09
0 1.14 0.15 0.11
3 and 0.2 1.14 0.075 and
0 0.14 0.17 1.01

0.22 0.56 0.67
1.1 0.3 1.31
1.1 0.9 0.90
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Figure 1: Feasible Region 

 
Figure 1 shows the feasible region for the example given above. The arrow shows the 
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direction of the second component x2, our objective direction. The optimal point is the 
rightmost vertex = (− 0.258, 0.662, − 0.416)T and the optimal value is 1.986. 
 
Geometrically, such a Linear Optimization Problem can be seen as follows:  
 

Find a point ( )1, ,
Tn nx x ∈… \ , which maximizes the scalar product cTx on the feasible 

region (polyhedron) X = {x | Ax ≤ b}. This means that among the isoclines of cTx , one 
shall be selected, which touches X without intersecting its interior.  The "touching point" 
is the optimal point for which we have been searching. 
 
From this view, it becomes clear that there are four qualitatively different outcomes of 
an LP: 
 

1. The feasible region X is bounded and the linear (continuous) function cTx attains 
its optimal value on X. 

2. The feasible region X is unbounded, but the linear function cTx attains its optimal 
value on X anyway. 

3. The feasible region X is unbounded, and the linear function cTx has no optimal 
value on X, because it is unbounded from above on X itself. 

4. The constraints of Ax ≤ b are contradictory, which induces that X = Ø. 
 
In algorithms this listing leads to the following general advice: 
 

• First, check whether X has feasible points. If not, then STOP because of 
INFEASIBILITY. 

• Else, try to optimize. As soon as it is clear that the objective function is 
unbounded, then STOP also, but this time because of UNBOUNDEDNESS. 

• Else, proceed with the optimization process until an optimal point is found. Then 
STOP because of OPTIMALITY. 

 
1.3. Different Forms of Programs and Transformations 
 
So far, we have presented only linear programs of the type: 
 
maximize cTx subject to Ax ≤ b. 
 
However, all analytical and arithmetical insights about Linear Programs can easily be 
transferred to the "General Linear Programming Problem": 
 
maximize
subject to

 
 
      0
      0

T T Td x e y f z
Ax By Cz a
Dx Fy Gz b
Hx Iy Jz c

x
z

+ +
+ + ≤
+ + =
+ + ≥

≥
≤

      (7) 
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From the essence of a real problem, it does not matter in which structural way some 
restrictions have been modeled. So, we allow the following transformations and we 
regard their outcome as equivalent: 
 

1. aTx = β ⇐⇒ aTx ≤ β AND aTx ≥ β 
An equation can be replaced by two inequalities. 

2. aTx ≥ β ⇐⇒ −aTx ≤ −β 
An inequality can be replaced by the reverse negative inequality. 

3. aTx ≤ β ⇐⇒ aTx + y = β, y ≥ 0 
An inequality can be replaced by an equation with a nonnegative slack variable. 

4. x = x+− x− with { },0i ix Max x+ =  and { },0i ix Max x− = −  

A variable can be partitioned as a difference of two positive (minimal) parts. 
5. A•ixi with xi ≥ 0 and −A•izi with zi ≤ 0 

The contribution of a column and a variable can be represented by the negative 
column and the negative variable. 

 
Of course, one can replace a maximization problem by a minimization problem of the 
negative objective function (if we keep in mind that our result is negative then). 
 
For the treatment of the different programs, it is very important to have the following 
reduction opportunity: In every equivalence class, according to the above mentioned 
transformations, there is a problem as: 
 
maximize subject to in canonical form,Tc x Ax b   ≤     (8) 
 
and as: 
 
maximize subject to ,  x 0 in standard form.Tc x Ax b    = ≥    (9) 
 
- 
- 
- 
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