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Summary 
 
This article introduces the basic models and ideas of the theory of non-cooperative 
games. We begin by treating games in the usual sense of the word, such as chess. We 
show that for a certain class of games, the outcome is completely determined if the 
players play optimally. Then we indicate how the descriptive framework of game 
theory, including the extensive and strategic form representations, can serve to model 
interactions between agents which do not qualify as games in the usual sense. For zero-
sum games, where one player's gain is the other's loss, we introduce the concept of 
value, which is the expected outcome when the game is played optimally. If players are 
allowed to use mixed (i.e., randomized) strategies, the minimax theorem asserts that the 
value exists. Non-zero-sum games are more complex, and we cannot hope to pinpoint 
their expected outcome as in the zero-sum case. The central concept for these games is 
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that of a Nash equilibrium, which is a choice of strategies for the players having the 
property that every player does best by playing his strategy if the others do the same. 
Nash's theorem guarantees the existence of a Nash equilibrium in mixed strategies. 
Finally, we turn to the modeling of incomplete information, which occurs when the 
players lack information about the game they are facing. We present the concepts of a 
"state of the world" and the "type" of a player, and show how they are incorporated in 
the Bayesian game model. 
 
1. Introduction 
 
Non-cooperative game theory studies situations in which a number of agents are 
involved in an interactive process. The outcome of this process is determined by the 
agents' individual decisions (sometimes in conjunction with chance) and affects the well 
being of each agent in a possibly different way. The most obvious examples of such 
situations are parlor games. The terminology we use has its roots in this area: the entire 
situation is called a game, the agents are called players, their acts are called moves, their 
overall plans of action are called strategies, and their evaluations of the outcome are 
called payoffs. However, the range of situations that we have in mind is much wider, 
and includes interactions in areas such as economics, politics, biology, computing, etc. 
Thus, the significance of non-cooperative game theory to the understanding of social 
and natural phenomena is far bigger than its name may suggest. 
 
The basic premise of our analysis is that players act rationally, meaning first and 
foremost, that they strive to maximize their payoffs. However, since their payoffs are 
affected not only by their own decisions but also by the other players' decisions, they 
must reason about the other players' reasoning. In doing so they take into account that 
the other players also act rationally. 
 
The qualification "non-cooperative" refers to the assumption that players make their 
decisions individually, and are not allowed to forge binding agreements with other 
players that stipulate the actions to be taken by the parties to the agreement. The players 
may be allowed to communicate with each other prior to the play of the game and 
discuss joint plans of action. However, during the play of the game they act as 
autonomous decision makers, and as such they will follow previously made joint plans 
only if doing so is rational for them. 
 
The theory of non-cooperative games comprises three main ingredients. The first of 
these is the development of formal models of non-cooperative games that create unified 
frameworks for representing games in a manner that lends itself to formal mathematical 
analysis. The second ingredient is the formulation of concepts that capture the idea of 
rational behavior in those models. The main such concept is that of equilibrium. The 
third ingredient is the use of mathematical tools in order to prove meaningful statements 
about those concepts, such as existence and characterizations of equilibrium. 
 
In any concrete application of the theory, the first step is to represent the situation at 
hand by one of the available formal models. Because real-life situations are typically 
very complex and not totally structured, it is often impossible and/or unhelpful to 
incorporate all the elements of the situation in the formal model. Therefore, this step 
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requires judicious decisions identifying those important features that must be modeled. 
Once the model is constructed, its analysis is carried out based on the appropriate 
concept of equilibrium, drawing on general results of non-cooperative game theory or, 
as the case may be, exploiting attributes of the specific application. This analysis yields 
conclusions, which may then be reformulated in terms of the real-life situation, 
providing insights into, or predictions about, the behavior of the agents and the long-
term steady states of the system being investigated. 
 
Another type of application is sometimes called game theoretic engineering. It involves 
making recommendations to organizations on how to set up the "rules of the game" so 
that the rational behavior of the agents will lead to results that are desirable from the 
organization's point of view. Examples include the revision of electoral systems, the 
design of auctions, the creation of markets for emission permits as a means to efficiently 
control pollution, etc. (see Mechanism Theory). This sort of application seems to be 
gaining more and more recognition lately. 
 
This article is organized according to several standard criteria for classifying non-
cooperative games: how the payoffs of the players are related, the presence or the 
absence of chance, the nature of the information that the players have. 
 
We do not attempt to present here a comprehensive survey of non-cooperative game 
theory. The omission of certain parts of the theory, even important ones, is unavoidable 
in such an article. Some of these areas are covered in other articles within this topic. 
What we try to do here is offer a gentle introduction to a small number of basic models, 
ideas and concepts. 
 
2. Chess-Like Games 
 
2.1 The Description of the Game 
 
The game of chess is a prime example of a class of games that we call chess-like games. 
We first give a verbal description of what we mean by a chess-like game. 
 
In such a game, two players take turns making their moves. One of the players is 
designated as the one who starts, we call this player White and the other player Black. 
Whenever a player chooses a move, he is perfectly informed of all moves made prior to 
that stage. The play of the game is fully determined by the players' choices, that is, it 
does not involve any chance. For every initial sequence of moves made alternatingly by 
the two players, the rules of the game determine whether the player whose turn it is to 
play should choose a move, in which case they also determine what his legal moves are, 
or whether the play has ended, in which case they also determine the outcome: a win for 
White, a win for Black, or a draw. It may be the case that the rules allow for a play 
consisting of an infinite sequence of moves, but such infinite plays must also be 
classified as resulting in one of the three possible outcomes mentioned above. 
 
Examples of chess-like games are chess, checkers, and tic-tac-toe. Note that Kriegspiel 
(a version of chess in which a player does not observe his opponent's moves) is not a 
chess-like game, due to the lack of perfect information. Backgammon is not a chess-like 
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game because it involves dice. 
 
We formally describe a chess-like game by means of a rooted tree (T, r), called the 
game-tree. Here T is a tree (that is, a connected acyclic graph which may be finite or 
infinite), and r, the root, is a designated node of T. We think of T as being oriented away 
from r. The edges that fan out from r correspond to the legal moves of White at his first 
turn. Each of these edges leads to a new node, and the edges that fan out from this new 
node correspond to the legal moves of Black after White chose the specified edge from 
r as his first move. It goes on like this: non-terminal nodes whose distance from r is 
even (respectively odd) are decision nodes of White (respectively Black), and the edges 
that fan out correspond to the legal moves of the respective player given the moves 
made so far. A maximal branch of (T, r) is a path that starts at the root r and either ends 
at a terminal node or is infinite. Every maximal branch corresponds to a play of the 
game. (Note the distinction we make between the usage of "game" and "play". A game 
is the totality of rules that define it, whereas a play of the game is a complete account of 
what happens a particular time when the game is played.) To complete the formal 
description of the game, we specify for each maximal branch whether it is a win for 
White, a win for Black, or a draw. 
 
The realization that every chess-like game can in principle be represented by a game-
tree as above, even though for most games constructing the actual game-tree is 
impractical, is an important conceptual step towards the analysis of such games. 
 
2.2 The Determinacy of Chess-Like Games 
 
The next important concept is that of a strategy. By a strategy we mean a complete set 
of instructions that tell a player what to do in every situation that may arise in the play 
of the game in which he is called upon to make a move. In terms of the formal 
description of a chess-like game by a game-tree, a strategy of a player is a function σ 
from the set of his decision nodes into the set of edges, such that σ(x) is one of the edges 
that fan out of x. 
 
It is clear from the above that a pair of strategies, σ for White and τ for Black, fully 
determines a play of the game. In particular any such pair (σ, τ) results in a win for 
White, a win for Black, or a draw. In effect, the comprehensive definition of the concept 
of strategy renders the actual play of the game unnecessary. We may imagine the 
players announcing (simultaneously) their respective strategies to a referee or a 
machine, who can determine right away the outcome based on the announced strategies. 
A strategy σ  of White is a winning strategy, if for every strategy τ of Black, the pair 
(σ , τ) results in a win for White. In other words, σ guarantees a win for White. A 
winning strategy for Black is defined similarly. A drawing strategy for a player is a 
strategy that guarantees at least a draw for that player, that is, using that strategy he will 
win or draw against any strategy of his opponent. 
 
The following theorem was discovered by John Von Neumann (but is often referred to, 
wrongly, as Zermelo's theorem). 
 
Theorem 1 
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Let G be a chess-like game in which the length of a play is finitely bounded (i.e., there 
exists M < ∞ such that in every play of the game there are at most M moves). Then one 
of the following statements is true:  
 

a. White has a winning strategy in G.  
b. Black has a winning strategy in G.  
c. Both White and Black have drawing strategies in G. 

 
It is important to understand that Theorem 1 does not merely state the tautological fact 
that every play of the game results in one of the three possible outcomes. Rather, the 
theorem asserts that every game (as opposed to every play of a game) satisfying the 
theorem's assumptions may be classified as a win for White, a win for Black, or a draw, 
in the sense that it will always end that way when played optimally. We refer to this 
property of a game G as determinacy. 
 
The proof of Theorem 1 proceeds by "backward induction". Namely, one classifies 
every subgame starting at a terminal node of the game-tree (this is trivial). Then one 
classifies every subgame starting at a node from which all moves lead to terminal nodes, 
and so on, working one's way to the root of the tree. For every subgame encountered in 
this process, it is classified as satisfying (a), (b), or (c), and at the end of the process, G 
itself is classified. Thus, the proof of Theorem 1 is constructive, leading to an algorithm 
for classifying a game and finding a winning strategy for the player who has one (or 
drawing strategies for both players).  
 
Nevertheless, for most real-life games, the computational complexity of constructing the 
game-tree, let alone running this algorithm, is much too high. Thus, although Theorem 1 
renders the games it applies to uninteresting, in principle, to players with unbounded 
computational abilities, in practice the games still hold interest to humans. The issues 
related to discovering winning strategies and the complexity of this task are studied 
within the field of "combinatorial games", which grew quite independently of the rest of 
game theory. 
 
Incidentally, the question of whether or not the game of chess itself satisfies the 
assumptions of Theorem 1 depends on a careful scrutiny of the rules of chess regarding, 
e.g., the repetition of positions on the board. Assuming an interpretation of the rules that 
makes the length of a play of chess finitely bounded, we can conclude from Theorem 1 
that chess is either a win for White, a win for Black, or a draw. However, nobody knows 
which of these it is! 
 
There are results extending Theorem 1 to certain classes of chess-like games with 
infinite plays. These results, starting from Gale and Stewart's theorem on "open games", 
depend on topological assumptions on the set of maximal branches of the game-tree 
which constitute a win for a given player.  
 
Using the Axiom of Choice, Gale and Stewart also showed that there exist infinite 
chess-like games, which are undetermined, that is, for which the conclusion of Theorem 
1 is false. This direction of research has revealed strong connections with the 
foundations of mathematics, and has grown quite independently of game theory, in the 
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field called "descriptive set theory". 
 
3. Representations of Non-Cooperative Games 
 
3.1 An Informal Description of the Class of Games 
 
The games that we consider here are more general than the chess-like games considered 
above in several respects: 
 
• There is a finite number n of players, possibly n > 2. 
• The order in which the players are called upon to make a move is arbitrary, and the 

identity of the player who has to move at a given stage may depend on the moves 
made up to that stage. 

• Information may be imperfect, meaning that at the time when a player is called upon 
to make a move, he may have only partial information on the moves made prior to 
that time. This includes also the possibility of simultaneous moves, which may be 
represented as sequential moves with the provision that the player who moves later 
must do so without being informed of the choice of the player who moved earlier. 

• There may be chance moves, that is, moves not controlled by any player but rather 
selected from a set of possible moves according to some probability distribution. 

• The outcome associated with any play of the game, rather than being a win for some 
player or a draw, is represented by an n-tuple of real numbers (u1, ..., un), where ui 
measures the utility that player i derives from the outcome. This permits to represent 
the outcomes of chess, for instance as (1, 0), (0, 1), or ( 1

2 , 1
2 ), and allows for much 

more general situations, as we will see below. 
 
This more flexible framework includes a variety of parlor games like Kriegspiel, 
backgammon, bridge, poker, and monopoly. More importantly, many real-life 
situations, which are not normally thought of as "games", may usefully be modeled as 
such. Examples include: competition between firms in an oligopolistic market, 
campaigns of opposing candidates running for election, struggle between genes as part 
of evolution, interaction between processors involved in a parallel computation, and 
more. 
 
There is, however, one important implicit assumption about the games we consider 
here, the validity of which must be assessed for any real-life application. This is the 
assumption of complete information, meaning that a player knows the entire description 
of the game. In addition, the player also knows that every other player knows the entire 
description of the game, and furthermore he knows that every other player knows that 
every other player knows the entire description of the game, and so forth. This condition 
is expressed concisely by saying that the description of the game is common knowledge. 
This concept should be distinguished from the concept of perfect information. While 
perfect information pertains to knowledge of what happened in the current play of the 
game, complete information pertains to knowledge of the game itself (its rules, the 
relevant probability distributions, who is informed of what and when, the utilities of the 
various outcomes to the various players). For example, bridge players who have 
mastered the rules of the game are engaged in a game of complete information which 
has, however, imperfect information: a player is not informed of the cards dealt to the 
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other players. In modeling real-life situations, the assumption of complete information 
is more problematic.  
 
- 
- 
- 
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