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Summary  
 
This article presents the basic models of discrete dynamic multiperson decision problems: 
repeated games with complete information, also called "supergames", repeated games 
with incomplete information and stochastic games. When relevant, zero-sum games are 
first investigated. The reference solution concept is the Nash equilibrium, hence the value 
in the zero-sum case. Finitely and infinitely repeated games are studied. The latter ones 
can be solved in an asymptotic way, by considering the limit, as the number of stages goes 
to infinity (respectively, as the discount factor goes to one) of the solutions of the finitely 
(respectively, discounted) repeated games. Another approach consists of solving directly 
the infinite horizon game by defining a limit payoff function in this game. The various 
methods are illustrated on classical results and examples. 
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1. Introduction 
 
Most phenomena evolve over time and depend on random events. When they are 
governed by nature alone, they can be modeled as stochastic processes, as for instance 
Markov chains. When they are determined by nature and a single decision maker, they 
can be studied by dynamic optimization, in particular, dynamic programming. When the 
decisions of conflicting individuals matter, they become the topic of game theory. As 
soon as several agents interact, many new issues arise, in addition to the ones that are 
already faced by a single agent in front of nature. For instance, the information of every 
individual on nature's moves and on the other agents' actions becomes a key ingredient of 
the model. Given the possible complexity of dynamic games, one is led to identify 
particular frameworks in which only some of the difficulties are present. 
 
The simplest model of a dynamic game consists of playing the same strategic form game 
for a very large number of stages, while observing all players' actions after every stage. 
One then refers to repeated games "with complete information and perfect monitoring" or 
simply, to "supergames". The main result in this framework, which is known as the "Folk 
theorem", characterizes the set of Nash equilibrium payoffs of the repeated game as the 
set of jointly feasible and individually rational outcomes of the one-shot game. The usual 
interpretation is that the repetition of a game favors cooperation between the players. The 
basic idea behind this result is that the observation of past moves makes it possible to 
punish any player who deviates from a prescribed sequence of actions. 
 
The previous model can be made more realistic by relaxing the assumption of perfect 
observation of the past moves, which gives rise to games with "imperfect monitoring". In 
such a framework, deviations may not be detectable, and even when they are, the 
implementation of punishments can be problematic. The systematic study of this natural 
extension of the model started recently and is far for being complete. 
 
Besides facilitating cooperative behavior, the repetition of a game may also enable the 
players to communicate: if the game lasts for a sufficiently long time, some stages can 
just be used to exchange information. Communication is particularly desirable in models 
where some individuals have more information than others do. Aumann and Maschler 
introduced such models in the sixties, in a series of reports to the United States Arms 
Control and Disarmament Agency. They mostly studied zero-sum two-person repeated 
games in which the players are uncertain about their stage payoffs. These are chosen once 
and for all by a move of nature at the very beginning of the game. The players receive 
some private information on nature's choice; during the course of the game, different 
forms of imperfect monitoring are possible. Obviously, in a zero-sum game, one does not 
expect any cooperation between the players. Hence, the analysis concentrates on the 
communication aspects, which can already be subtle in such games. This study turned out 
to be a necessary step toward the characterization of Nash equilibrium payoffs in 
non-zero-sum games. Indeed, Folk theorem-like results rely on the players' individually 
rational levels, which are determined in zero-sum games. 
 
Repeated games with incomplete information are intimately related to another model of 
dynamic games that historically came before them: the stochastic games, which were 
introduced by Shapley in the fifties. They can be viewed as an extension of dynamic 
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programming to multiperson decision problems. In these games, a new state of nature, 
which determines the payoffs, is chosen at every stage, as a function of the state and the 
players' moves at the previous stage. The players are completely informed of the past 
history and the current state. The model was extensively studied in the zero-sum case. 
The existence of a value was established under very general mathematical assumptions on 
the state and action spaces. Substantial progress was made recently in proving the 
existence of Nash equilibrium payoffs in the non-zero-sum case. 
 
In the sequel of the article, we survey classical results on supergames, repeated games 
with incomplete information and stochastic games. This order of presentation allows us to 
illustrate the basic methods of solution on simple examples. 
 
2. Supergames 
 
2.3 Standard Signals 
 
2.3.1 Finitely Repeated Games 
 
Let G be a finite strategic form game, namely, a (finite) set of players I, a (finite) set of 
actions Ai for every player i and payoff (or, better, utility) functions ui : A →R , where A = 
Πj∈I Aj. Let n be a positive integer. In the n time repeated game, denoted as Γn, at every 
stage t = 1, ..., n, every player i chooses a move i

ta ∈ Ai; the vector of actions at = ( i
ta )i∈I  is 

then revealed to all players. The next stage is played in a similar way. At the end, player i 
receives the payoff 1

1 ( )n i
t tn

u a=∑ . As part of the "complete information" assumption, the 

description of the game is assumed to be common knowledge among the players. It is also 
understood that Γn is a game with perfect recall, so that (by Kuhn's theorem), one can 
focus on behavior strategies without loss of generality. Let Ht be the set of histories up to 
stage t: Ht = At−1; for any set E, let Δ(E) denote the set of all probability distributions over 
E; a (behavior) strategy of player i in Γn is a sequence of mappings i

tσ : Ht → Δ(Ai), t = 

1, ..., n. Let σ i = ( i
tσ )t≥1 and σ = ( σ i)i∈I. A vector of strategies σ induces a probability 

distribution over histories (with expectation Eσ) and hence over payoffs. Nash equilibria 
of Γn are defined in the standard way. Let nE  be the set of Nash equilibrium payoffs of Γn. 
 
2.3.2 Infinitely Repeated Games 
 
Long repeated games are particularly interesting. They can be solved by means of the 
limit (with respect to the Haussdorf topology), as n → ∞, of the nE  or by introducing the 
infinitely repeated game Γ∞, which, at every stage t, is played as Γn but lasts forever. As 
suggested by the example below, the latter model may be more appropriate to capture the 
behavior of individuals in long games of unknown duration. In Γ∞, a strategy σ i of player 
i is an infinite sequence, with i

tσ  as above. Given a strategy vector σ in Γ∞, let us denote 

as ( )i
nγ σ  the expected n stage payoff of player i, i.e., ( )i

nγ σ = Eσ [ 1
1 ( )n i

t tn
u a=∑ ]. Player 

i's payoff in Γ∞ can be defined as some (Banach) limit (or the "lim inf" or the "lim sup"), 
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as n → ∞, of ( )i
nγ σ . Some care must indeed be taken, since the payoffs associated with 

arbitrary strategies are not necessarily convergent. A priori, the set of equilibrium payoffs 
depends on the limit that is chosen. Alternatively, σ is a uniform equilibrium in Γ∞ if the 

( )i
nγ σ  converge and for every ε > 0, there exists n0 such that for every n ≥ n0, σ is an 

ε-equilibrium of Γn, i.e., for all i and all strategies τ i, ( )i
nγ σ ≥ ( , )i i i

nγ τ σ −  − ε (where (τi, 
σ−i) is obtained by replacing σ i by τ i in σ). The different approaches generate the same 
set ∞E  of equilibrium payoffs in Γ∞. 
 
The basic result on repeated games, the "Folk theorem", characterizes ∞E  as the set V of 
all feasible, individually rational payoffs of the one-shot game G. More precisely, the set 
of feasible vector payoffs in G is the convex hull of the (ui(a))i∈I , a ∈ A. A payoff is thus 
feasible in G if it can be achieved by means of a correlated strategy. In order to define 
player i's minimax level in G, recall that Δ(Aj) is the set of mixed strategies of player j in G, 
and let Δ−i = Πj≠i Δ(Aj). Let vi = min i iα− −∈Δ ( )max i iAα ∈Δ

ui(α i, α −i) (where ui also denotes 

the extension of ui to mixed strategies). A vector payoff z, in IR , is individually rational if 
zi ≥ vi, for every i ∈ I. Obviously, an equilibrium payoff of Γ∞ must belong to V. To 
establish the converse, fix a payoff in V. Since it is feasible, it can be achieved by means 
of an infinite sequence of moves, say (at)t≥1. In order to generate this sequence in 
equilibrium, the opponents of a possible defector make the threat of punishing him (for a 
sufficiently large number of stages) at his minimax level. Since the payoff is individually 
rational, no deviation can be profitable. The argument is illustrated on the next example. 
 
Example 1 
 
The following two-person game is known as the "prisoner's dilemma": 
 

 
2, 2 0,3
3,0 1,1
⎛ ⎞
⎜ ⎟
⎝ ⎠

 

 
In the one-shot game G, both players have a dominant strategy; 1E = {(1, 1)}. For every n, 

nE = {(1, 1)} as well; a rigorous proof of this is tedious, but the argument is 
straightforward for subgame perfect equilibrium payoffs. Thus, the n stage repeated game 
does not reflect the intuition that repetition favors cooperation. By the Folk theorem, 
∞E is the set of all payoffs, with both components greater than 1, which can be written as 

a convex combination of the four payoffs in the above matrix. In particular, the 
cooperative payoff (2, 2) ∈ ∞E . To get this payoff, each player plays his first 
("cooperative") action as long as the other player does. If a player observes a deviation, he 
switches to his other action ("non-cooperative"), so that the deviator cannot expect more 
than 1. It is sufficient to apply the "punishment" for a finite number of stages to prevent 
any deviation. (For further account of this example, see Experimental Game Theory). 
 
In the previous example, nE does not converge (with respect to the Haussdorf topology) 
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to ∞E . However, if for every player i, G (or some
inΓ ) has an equilibrium payoff e(i) that 

is strictly individually rational for i (i.e., such that ei(i) > vi), the Folk theorem 
characterization also applies to limn→∞ nE . 
 
Furthermore, an analog to the Folk theorem holds for the set '∞E  of subgame perfect 
equilibrium payoffs of Γ∞ (by the same argument as above). Under suitable assumptions 
on the one-shot game G, the convergence result also extends to the sets 'nE  of subgame 
perfect equilibrium payoffs in Γn. 
 
2.3.3 Discounted Games 
 
In the previous analysis, it is understood that players are infinitely patient. This 
assumption is useful in that it provides a benchmark: the Folk theorem characterization. 
One takes account of the possible impatience of the players by introducing a discount 
factor in the payoff function. Another interpretation is that the game can stop, with some 
positive probability, at every stage. Let the stages n = 1, 2, ..., and the strategies σ i, i ∈ I, 
be described as above. Let λ ∈ (0, 1); in the discounted game Γλ, player i evaluates his 
expected payoff from σ as Eσ[ 1t

∞
=∑ λ(1−λ)t−1ui(at)]. i.e. player i uses a geometric average. 

λ is best interpreted as the probability that the game ends; the discount factor is 1 − λ. We 
make the simplifying assumption that all players use the same discount factor throughout 
the article. The previous payoff function makes Γλ a well-defined game, exactly as Γn. Let 
λE  (respectively, 'λE ) be the set of equilibrium (respectively, subgame perfect 

equilibrium) payoffs in Γλ. As λ → 0, 'λE converges to V, provided that the latter set has a 
non-empty interior. The proof uses the same basic ideas as above, but punishments are 
more delicate. 
 
- 
- 
- 
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