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Summary 

Mice began to be used for biological experiments for many reasons outlined in Section 
1 of this article. Mouse genome sequences have been determined by two organizations. 
In the first, the single-read expressed sequence tags (EST) project began with the use of 
ESTs as markers on chromosomes. In the second, Japan originally started a full-length 
cDNA project. The Mouse Encyclopedia Project is mainly conducted by the Laboratory 
for Genome Exploration Research Group of the RIKEN Yokohama Institute, which 
leads the field in the collection and sequencing of full-length cDNA clones. The United 
States in turn started the Mammalian Gene Collection project. A Mouse cDNA 
annotation meeting was held at RIKEN in Japan. Researchers from all over the world 
predicted 13 000 novel mouse genes and found 8000 genes to be novel for mammalians 
by a computational approach. A positional cloning method is a powerful tool to identify 
causative genes for phenotypes such as diseases, especially in the mouse, because it is 
possible to mate any combination of individual mice and construct large pedigrees to 
facilitate genetic analyses. Once the mouse cDNA encyclopedia is established, it will 
facilitate many ways to find genes based on the new positional candidate approach. 
After delineating the chromosomal region by linkage, all genes in the region can be 
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easily input into a computer. Isolating the cDNA clones de novo is no longer necessary. 
Instead, full-length cDNA clones are chosen from the cDNA Encyclopedia. 

1. The Importance of the Mouse Genome and Transcriptome Study 

In the era of the genome sequencing project, there must be a reason for any organism to 
be chosen for the project. Generally, each organism must be a representative model for 
various biological phenomena. For example, in the case of budding yeast 
(Saccharomyces cerevisiae), its genotypes are directly linked to its phenotypes and the 
screening of mutants is easy because yeast is unicellular and spends almost all periods 
of its life cycle as a haploid. The rescue of mutated phenotypes is relatively simple 
through the complementation and identification of the genes responsible for the mutated 
phenotypes. Though fruit flies (Drosophila melanogaster) are multicellular organisms, 
their life cycle is relatively short and observation during embryo genesis is simple. The 
genetic map of D. melanogaster was established in the early twentieth century and 
enormous numbers of mutants have been isolated and characterized. The nematodes 
(Caenorhabditis elegans) have similar advantages, such as a short life cycle and easy 
observation during embryo genesis. In addition, the cell numbers constituting their 
bodies are so limited that individual cell lineage can be traced through embryo genesis. 
In this way, nematodes have made a great contribution to developmental biology. Zebra 
fish are also one of the greatest models for developmental biology, in that they are 
vertebrates and the developmental process can be seen in their transparent eggs. 

There are also many reasons for using mice. They were first used for biological 
experiments in the early twentieth century when inbred strains were produced. Although 
the life cycle of mice is much shorter than that of the human, its physiology is almost 
the same and mice, as mammals, have been models for various aspects of the life 
activities of humans. The establishment of many inbred strains and cross-breeding with 
other species made it possible to perform genetic linkage analysis. Genome-wide mutant 
production became available with the use of ethylnitrosourea (ENU). Isolation of 
embryonic stem (ES) cells and the development of gene technology brought about the 
production of knockout mice and transgenic mice. Under these circumstances, the 
mouse was chosen as the second most important mammal used in the genome 
sequencing project after the human. 

Compared with the human, the mouse is superior as a model for experiment for the 
following reasons: 

• The mouse’s biochemical pathways are similar to those of the human. Hence, 
the mouse can be used to study the effects of environmental factors that cannot 
be controlled in human diseases. 

• Inbred strains that have the same genetic background are available. These strains 
enable the operation of genes by mating experiments. Embryological techniques 
such as gene induction, gene knockout, and site-directed and random 
mutagenesis are also possible, so that the mechanisms of polygenic diseases can 
be investigated. 
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• A significant number of studies have accumulated information about mice 
mutagenesis and their phenotypes in comparison with human Mendelian genetic 
diseases. 

• The human and mouse genomes are almost the same length (3 billion base-
pairs). Therefore, human genes are expected to exist in the mouse genome. 

• Human diseases are expected to occur in the mouse. 
• The mouse can be employed to extract genes that are difficult to extract from the 

human, such as genes derived from embryo genesis, so that lethal genes can be 
approached. 

Hence, the mouse is an important model animal for the analysis of human biological 
processes in normal and disease conditions. 

2. The History of Mouse Genetics 

2.1. The Beginning of Mouse Genetics and the Establishment of Inbred Strains 

Mouse genetics began with a confirmation of Mendel’s laws using mice just after the 
rediscovery of his laws in 1900. Many breeding experiments initially analyzed the 
genetic basis for body hair color. As a result, the famous Ay gene locus (dominant and 
lethal), which coded yellow hair color, was identified. The production of inbred strains 
also began, and the first inbred strain, DBA (dilute, brown, non-agouti mice), was 
established. An inbred strain can be produced by breeding between siblings for more 
than 20 generations. In due course, large numbers of inbred strains were established, 
often in relation to cancer research. This research has shown that multiple loci are 
involved in cancers and each type of cancer may have a specific set of loci responsible 
for its phenotype. 

Another major field in the early days of mouse genetics was targeted toward studies of 
the complex T locus, which is responsible for notochord formation during embryo 
genesis. Because mutations in this locus led to embryonal lethality, studies of the T 
locus developed a close relationship to developmental biology and brought attention to 
pleiotropism, a phenomenon where a mutation in a single gene affects various 
phenotypes. Nowadays, this phenomenon can be understood as being caused by a 
mutation in transcription factors or by a dysfunction in the signal transduction and 
cascade systems among genes. In the past, however, genes were not known to be DNA, 
and much research focused on this matter. Threshold characters during embryo genesis, 
histocompatibility (H2 locus), sex determination, and X chromosome inactivation have 
also been major subjects of mouse genetics since the early days. 

In the 1940s a new type of inbred strain, a congenic strain, was developed. This 
development was achieved by transferring a small segment of a chromosome from one 
strain to the chromosome of another. More than 10 generations of backcrosses were 
needed. Two other types of inbred strains were also produced: recombinant inbred 
strains were obtained by crossing two inbred strains, each of which possessed 50% of 
the genetic material from the two parental strains, and the recombinant congenic strains, 
which have more than half the chromosomes from one of the parental strains. These 
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strains were initially produced to promote studies of diseases caused by multiple factors 
such as cancers. 

Though genetic mapping based on the phenotypes of mice had been performed between 
inbred strains, limited numbers of polymorphisms presented a weak point. In the 1980s, 
inter-species breeding (for example, Mus spretus) became available and the 
development of microsatellite markers that enabled typing with PCR rapidly accelerated 
genetic mapping. 

A method to map genes on chromosomes without directly mating mice, called radiation 
hybrid (RH) mapping was also developed. This method utilizes hamster cells containing 
various portions of the fragmented mouse genome. The markers on the mouse genome, 
such as microsatellite markers, single-read expressed sequence tags (EST), and cDNA 
can be mapped by PCR with hamster genomic DNA. 

As many genes were isolated and mapped on the chromosomes in various species, the 
mapping of genes using information from the conservation of the genome sequences 
among species was performed. Continuous portions on the chromosomes were often 
conserved in both mice and humans. When one gene is mapped on the human 
chromosome, this gene, even if not yet discovered in the mouse, can be mapped on the 
mouse chromosome, assuming the region around this gene is conserved between 
humans and mice. 

With the advance in gene engineering technologies, a new field for studying the 
phenotypes of individuals containing artificially modified genes reversed approaches to 
classical genetic mapping. It entailed both the production of transgenic mice and the 
production of gene-knockout mice. Genes associated with human diseases are 
introduced to fertilize mouse eggs and the resultant transgenic mice can be used to 
analyze various aspects of the diseases. Many inbred strains with diverse genetic 
backgrounds exist in mice and this diversity makes it possible to study the difference in 
occurrence of specific diseases associated with specific genetic backgrounds. The genes 
may be introduced as cDNA or BAC (bacterial artificial chromosome) fragments. When 
a BAC fragment is introduced, expression close to that of a normal condition can be 
expected. The knockout mice are produced by introducing a mutation to a specific gene 
on the chromosomes, rather than by introducing new copies of genes in transgenic mice. 
Next, the function of the gene is analyzed by studying the phenotypes of the knockout 
mice. This analysis is also a powerful technique to further prove the candidacy of the 
genes positionally cloned in human diseases. It is thus becoming possible to time the 
expression and tissue specificity of gene knockout conditions. 

In the post-genome era where the human genome draft sequence is complete and the 
mouse genome draft sequence is in the assembly stage, approaches to genetics are 
genome-wide. Systematic high throughput production of mutants with ENU is 
performed all over the world. ENU, applied to mature male mice, causes point 
mutations in their sperm DNA. The phenotypes of the offspring of these male mice are 
screened and interesting phenotypes are chosen for further analysis. 
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In contrast to mutagenesis with ENU, which is driven by phenotype screening, a gene 
trap represents an approach from genotypes. A neomycin resistant gene without a 
promoter is introduced to the chromosomes of ES cells to randomly disrupt the genes on 
the chromosomes. Next, the chromosomal DNA of the promoter region of the “trapped 
gene” is recovered from the surviving ES cells with the presence of neomycin. About 
10–15% of the trapped genes have homologies to the sequences found in the public 
databases. Knockout mice with mutations of interest for future studies will be produced 
with ES cells. 

3. The Determination of Mouse Genome Sequences 

Mouse genome sequences have been determined by two organizations, the Mouse 
Sequencing Consortium (MSC) and Celera. The MSC comprises 10 public sequencing 
centers who make their raw data freely available to assist in deciphering the genetic 
code of the mouse and producing a high quality genome sequence. Deciphering the 
genetic code of the mouse helps us to understand both mouse and human genes by 
comparing them with human genome sequences. The first MSC effort was completed in 
2000, but the Consortium did not assemble their sequencing data. MGC chopped 
genomic DNA from B57BL/6 mice and sequenced this DNA in threefold coverage of 
the entire genome. 

The sequences are typically short: no more than 500 bases long, which are shorter than 
most single genes. MSC is planning further genome sequencing of the mouse in detail. 
The sequence will appear in 2003 as a high-quality draft of the mouse genome sequence, 
and the final version will be finished by 2005.  

Celera, a private sector company, claimed in 2000 to have determined a mouse genome 
sequence of about 2.6 billion bases, which covers 99% of the entire mouse genome. 
Celera sequenced DNAs from three strains (129X1/SvJ, DBA/2J and A/J) and provided 
sixfold coverage of the genome. This sequence is redundant enough to assemble and 
order the sequence fragments into a rough draft of the genome. Currently, however, a 
fee is charged for access to the data. 

- 
- 
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