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Summary 
 
Extremophiles are organisms which permanently experience environmental conditions 
which may be considered as extreme in comparison to the physico-chemical 
characteristics of the normal environment of human cells: the latter belonging to the 
mesophile or temperate world. Some eukaryotic organisms such as fishes, invertebrates, 
yeasts, fungi, and plants have partially colonized extreme habitats characterized by low 
temperature and/or of elevated hydrostatic pressure. In general, however, the organisms 
capable of thriving at the limits of temperature, pH, salt concentration and hydrostatic 
pressure, are prokaryotic. In fact, some organisms depend on these extreme conditions 
for survival and have therefore developed unique adaptations, especially at the level of 
their membranes and macromolecules, and affecting proteins and nucleic acids in 
particular. The molecular bases of the various adaptations are beginning to be 
understood and are briefly described. The study of the extremophile world has 
contributed greatly to defining, in more precise terms, fundamental concepts such as 
macromolecule stability and protein folding. In addition extremophiles offer unique and 
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unlimited potential in development of biotechnological tools, which are only now 
beginning to be exploited. 
 
1. Introduction 

The word “extremophile” refers to organisms that survive, and indeed proliferate, under 
physico-chemical conditions to some extent removed from those characterizing a 
suitable environment for human beings. This anthropocentric view is quite useful in 
defining what is an “extreme property” since the possible deleterious effect of an 
unsuitable parameter, physical or chemical, on human cell integrity is easily appreciated. 
Environments considered as harmful include those characterized by extreme acidity or 
alkalinity, very low or elevated temperatures, or by pressures remote from so-called 
atmospheric pressure. To these, one can add any environment in which our eukaryotic 
cells will suffer from the presence of various xenobiotic substances, such as heavy 
metals and high salt concentrations, or from the absence of oxygen. The cells, mainly 
prokaryotic, capable of supporting one or several of these extreme conditions, have been 
grouped into families on the basis of the main characteristic of their environment. One 
can nowadays therefore distinguish seven families of extremophiles: 

1. Thermophiles, adapted to temperatures generally exceeding 60 °C. 
2. Psychrophiles, which can readily grow at temperatures often below 0 °C. 
3. Halophiles, which can be completely dependent on salt concentrations 

exceeding the salinity of seawater by more than a factor of ten. 
4. Alkaliphiles, which can easily thrive at pH values exceeding 10. 
5. Acidophiles, which can easily thrive at pH values close to 0. 
6. Metallophiles, which can survive in high concentrations of heavy metals. 
7. Barophiles, now more commonly named piezophiles, which can be successful 

in environments exposed to hydrostatic pressures as high as about 1,000 
atmospheres—the conditions prevailing in the deepest ocean regions such as 
the Mariana Trench (–10,897m). By analogy, organisms having colonized 
ecosystems deprived of oxygen are known as anoxiphiles. 

In 1974, MacElroy proposed the name “extremophile” to designate any organism able 
to support environmental conditions usually fatal to most eukaryotic cells. This 
extremophily has pertinently been compared to the eccentricity characterizing human 
beings displaying behavior considered marginal by normal citizens. In contrast, the term 
mesophile is applied to organisms adapted to non-stressing environmental conditions 
such as those experienced by normal eukaryotic cells. 

Eukaryotic cells and multicellular organisms are usually very sensitive to unusual 
physical or chemical environmental conditions. For instance, the temperature limit for 
their survival does not exceed 60 °C, as in the case of some algae and fungi, whereas 
most other eukaryotic organisms do not tolerate temperatures higher than 50 °C. This is 
due to the particular sensitivity of some cellular components, the integrity of which is 
altered above a certain temperature threshold. This remark is, of course, also valid for 
the other extreme parameters mentioned above. The discovery of organisms resistant to 
temperatures higher than 60 °C only dates back to the late 1960s, when microorganisms 
capable of growing at temperatures greater than 70 °C were identified in hot springs at 



UNESCO – 
EOLS

S

SAMPLE
 C

HAPTERS

EXTREMOPHILES – Vol. I - Extremophiles: Basic Concepts - Charles Gerday 

©Encyclopedia of Life Support Systems (EOLSS) 

the Yellowstone National Park in the USA. Further investigation led to the 
identification of extraordinary microorganisms capable of growing at a temperature of 
113 °C. These included Pyrolobus fumarii, isolated from a deep-sea hydrothermal vent 
and amazingly unable to thrive at temperature lower than 90 °C. In similar extreme 
contexts, microorganisms such as Picrophilus oshimae, discovered in acidic 
geothermally heated waters, can grow successfully in pH environments close to zero, 
equivalent to a 1M solution of Hydrochloric acid. Even more impressive are the 
organisms sustaining pressures equivalent to 1,000 atmospheres miraculously exhumed 
from the 10 km deep Mariana Trench, an elongated depression on the Pacific Ocean 
floor, in the early 1970s. These few examples testify to the remarkable adaptation 
processes which have taken place in order to render life possible in such extreme 
conditions. An irresistible current of curiosity has drawn numerous scientists into this 
field of investigations, not only to try to understand the molecular processes involved, 
but also to exploit the unique properties of these organisms and, in particular, of their 
enzymes. 

Taking into account the origin of earth, resulting from a condensation process of cosmic 
dust about 4.5 billion years ago, one can assume that the primitive earth or initial crust 
amounted to a patchwork of hostile environments in which a cell prototype, having 
apparently some properties in common with the actual prokaryotes, was born. This 
crucial process took place 3.7–3.8 billion years, during the early stages of the Archaean: 
the first eon, corresponding to the period of time encompassing the origin of earth up 
until 2.5 billion years ago. This dating is supported by the fact that vestigial cells have 
been discovered in rocks 3.5 billion years old. 

Two fundamental questions can now be addressed: 

• Did the primordial cells originate from multiple streams or from a single 
ancestor? In other words, was early life already characterized by a certain 
degree of biodiversity? 

• What were the characteristics of the proto-biotope(s) which has (have) enabled 
the establishment of cellular life? 

These questions will be discussed in detail in other articles in EOLSS on-line, notably 
those by Michael Gross, Nicolas Glansdorff, and Patrick Forterre, but the idea has been 
formulated that perhaps the emergence of cellular organization was quickly succeeded 
by a rapid diversification, forced by the existence of environments displaying properties 
close to those defining the biotopes which are now known as extreme biotopes. 
Alternatively, perhaps the primordial cell or microorganism originated in a unique and 
specific environment and has seen slow and progressive modifications, these being 
modulated by the rapid global changes and the catastrophic processes responsible for 
the diversity which can be observed nowadays. However, the remarkable diversity in 
the present world system may represent only 0.1 percent of all species that ever 
inhabited the earth! The explosion of multicellular and skeleton-forming species 
succeeding the Ediacaran fauna and characterizing the most recent eon, the Phanerozoic, 
about 500 millions years ago, underlines the importance of global and rapid changes—
like, for example, the emergence of high concentrations of oxygen in the atmosphere at 
that time—in the evolution and diversification of animal species. The fact that only 0.1 
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percent of “historical” overall diversity still exists nowadays does not mean that the 
biodiversity is decreasing globally. Although this is a matter of controversy, especially 
regarding the real number of species inhabiting our earth, there is some evidence that 
global diversity is continually increasing, the speciation rate apparently remaining 
higher than the extinction rate. The idea is supported in part by the fact that young fossil 
sites are generally richer in species than older ones. 

One can assume that the wet environments, perhaps the cradle of primordial cells, were 
probably quite diversified in their hostile properties due to their tumultuous origin. It is 
quite possible that various extremophiles have been the earliest colonizers of our planet 
and that they were followed by more “normal” organisms, progressively adapted to 
environments evolving slowly towards biotopes displaying a set of relatively benign 
properties as defined earlier. If this scenario is correct, the extremophiles could 
therefore be considered as relics, still colonizing environments which have escaped the 
process of anthropomorphic normalization. 

The somewhat controversial phylogenetic tree of microorganisms (see “Phylogeny of 
extremophile organisms,” EOLSS on-line, 2002) has been reconstituted from the 
analysis of sequence differences in ribosomal RNA. Based on the pioneering work of 
Carl Woese, it indicates that thermophilic species are very close, in terms of 
phylogenetic distances, to the point of separation between bacteria and archaea. This has 
given rise to the idea that the primordial cell was a thermophile. 

2. Effects of Extreme Conditions on Cellular Components 

Once again, we may take as reference points cellular components typical of human cells, 
or of microorganisms experiencing non-extreme conditions of temperature, pH, salinity, 
pressure, and concentration of xenobiotic substances. To analyze the adaptation 
processes one has to define the effects of certain physico-chemical parameters on 
various cellular compounds. It seems reasonable to focus primarily on the basic 
components of a cell, which are the membranes, the nucleic acids, and the proteins. We 
select these macromolecular and supramolecular structures as indicators of adaptation 
because they are stabilized by weak interactions, which are themselves very sensitive to 
the properties of the environment. Moreover, they are obviously the main actors of 
cellular life, controlling the exchanges between the intracellular space and the 
extracellular environments, cell division, cell structure, and cell chemistry. 

- 
- 
- 
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