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Biographical Sketch 
 
Summary 
 
Physical laws in classical physics have are deterministic in nature which implies that 
any isolated system such as the universe as a whole evolves in a deterministic way so 
that once we know the state of a system at a time states of the system in future will be 
uniquely predicted. This turns out to be violated by the uncertainty principle of quantum 
mechanics on the one hand and the presence of chaotic motion even in classical physics 
on the other. 
 
The energy conservation law and the law of increase of entropy are discussed in an 
elementary way. They are valid for any isolated system without exceptions, showing the 
universality and great power of laws of physics. Symmetry principle is an indispensable 
ingredient in modern physics. Symmetries such as the symmetry under translations in 
space or time are well shared by the fundamental laws of physics, which lead to the law 
of energy conservation or momentum conservation. Also the charge conservation law is 
related to the gauge symmetry of electromagnetic interaction. 
 
The special and general relativities by Einstein based upon the geometrical symmetry 
principle revealed the space-time structure of the physical world with remarkable 
outcomes. For example, space and time are interrelated, mass is a kind of energy, and 
gravity is related to the curvature of the space-time structure of our physical world. 
 
Ordinary matter consists of a huge number of atoms or molecules and there exist quite 
many microscopic states indistinguishable from each other. Thus, we need a statistical 
approach to find useful information about ordinary matter. Statistical thermodynamics is 
such a theory to connect the microscopic and macroscopic worlds. The basic postulate is 
that every microstate is realized with equal probability for an isolated system. This 
postulate together with the first and second laws of thermodynamics makes it possible 
to predict properties of any thermodynamical quantity not only for isolated systems but 
also for other systems interacting with their surroundings. 
 
Study of complex systems with non-linear interactions among their constituents is a 
relatively new field out of which some interesting features of the complex systems 
emerge. For example, even a system with a few degrees of freedom of motion can 
exhibit chaotic behavior under appropriate conditions. Important concepts in complex 
phenomena such as attractors, bifurcations, entrainments, fractals, and chaos are 
described. 
 
Introduction 
 
Any physical system is described by an appropriate set of dynamical variables. A single 
pointlike particle is described by its position and momentum, and a system consisting of 
many particles is described by the positions and momenta of all the particles in the 
system. Any thermodynamical system in equilibrium can be described by an appropriate 
set of thermodynamical variables such as temperature and pressure. A physical law is a 
relation among dynamical variables or an equation of motion to determine the time 
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evolution of dynamical variables through interactions among them. 
 
When something unexpected happens, we feel that there must be some reason for it and 
try hard to find its cause. When we know something happened, we might speculate on 
what will occur next. These thoughts are based on a view that past, present, and future 
are interrelated with each other through causal strings connecting them. If the causal 
relations were so tight that past determines present and present determines future, we 
are living in a deterministic physical world. 
 
One of the most prominent features of a physical system is its deterministic nature. 
When we throw a ball, we know through our experiences that the motion of the ball is 
uniquely determined by the initial position and velocity of the ball. If we use a 
technique such as throwing a ball to rotate about its own axis, the ball will take a 
different path depending on how it was rotated. Even in this case, the motion of the ball 
is uniquely determined by the position, velocity and rotational motion of the ball at the 
initial time. 
 
We can choose the initial position and velocity of a body as we like. However, the 
acceleration of a body is determined by forces such as the gravitational force acting on 
the body. Then, by solving Newton's equation of motion under the given forces, states 
of the body afterwards will be uniquely determined. In general, the state of an object or 
a system in the past uniquely determines the states of present and of future through 
causal strings connecting them. 
 
In natural as well as social phenomena the time evolution of a system is determined not 
only by the internal dynamics of the system but also by external circumstances affecting 
the system. In physics, forces acting on an object are due to the presence of other 
objects. In the case of the gravitational force, the force depends on the position of the 
object relative to the others. In case of the frictional force due to air, the force depends 
on the velocity of the object relative to air. Only when the positions and velocities of all 
the external objects are precisely known as functions of time, motion of the object can 
be uniquely determined by solving the equation of motion for the object. 
 
In order to avoid any effect of the outside environment on a system, we may consider an 
isolated system on which no external body is exerting a force. Such an isolated system 
must be chosen large enough to accommodate all of mutually interacting bodies in it. 
Then, the time evolution of the isolated system would be entirely governed by its 
internal dynamics and is uniquely determined by the initial positions and velocities of 
all the bodies in the system. 
 
We might ask whether there exists such an isolated system in nature. The whole 
universe is apparently an isolated system, because we cannot think of any outside world 
of it. Can we think of any other isolated system besides the whole universe? All of the 
known forces such as gravitational and electrostatic forces decrease rapidly in strengths 
with increasing distances between interacting bodies. Therefore, any system which is 
well separated from others by large distances might be regarded approximately as an 
isolated system. Even if the system is still acted by weak forces from outside, motion of 
bodies in the system might be approximately determined by the internal dynamics of the 
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system. In this respect, there exist quite many isolated systems in nature. 
 
The position and momentum (or velocity) are dynamical variables to describe motion of 
bodies. Their values can be arbitrarily chosen at an initial time, but their courses in time 
afterwards are uniquely determined by the equations of motion once the initial 
conditions are given. Both the position and momentum of a body are a three 
dimensional vector in space. Therefore, the initial conditions of motion of a body are 
specified by fixing the values of the three components of the position and momentum at 
an initial time. We call that the degree of freedom of motion is three for a single object 
moving in three dimensional space. For a system consisting of N particles, the degree of 
freedom of motion is 3N and the number of dynamical variables is 6N. 
 
The deterministic nature inherent in Newton's equation of motion was advocated 
fiercely by his earnest successor Laplace (1749-1827). Laplace expressed a view that 
the future of our universe as well as the fates of individuals are determined by the initial 
conditions given at the beginning of the history of our universe, thus either the universe 
or individuals cannot escape from the fates specified by the initial conditions. He once 
stated that "If we can know positions and velocities of all the atoms in our universe at an 
instant of time, we can predict through analytical methods how the universe has evolved 
up to now and how it would develop in future". 
 
There exist a huge number of atoms or elementary particles in our universe. According 
to our present knowledge, the number of atoms in the whole universe is estimated to be 
of the order of 1078. Even if we take a small object such as a grain of wheat, the number 
of atoms in the grain is quite large and almost infinite. This means that the degree of 
freedom of motion or the number of dynamical variables is extremely large and almost 
infinite. Therefore, it is practically impossible to know positions and velocities of all the 
atoms in any macroscopic system. Thus, the deterministic nature of Newton's equation 
of motion is masked by uncertainties due to our ignorance about initial conditions of a 
system. 
 
However, conceptually we cannot get rid of a logical assertion that the fate of the 
universe as well as the fate of our individual life is basically fixed by how our universe 
started. This is similar to the situation that we are free in our way of living when we are 
ignorant about social customs and circumstances and that we become less free when we 
get more knowledge on them. If one's fate is really predetermined through the causal 
strings coming out from the initial state of the universe, many of us might feel our life 
dull. 
 
Fortunately, the deterministic nature inherent in the Newtonian physics has become 
questionable through progress in physics. One of the breakthroughs is the discovery of 
possible violation of the deterministic nature even within the framework of the 
Newtonian mechanics and the other is the birth of quantum mechanics in which the 
uncertainty principle of Heisenberg plays dominant role. Since we shall describe 
quantum mechanics in a later chapter (see Quantum Systems), here we will be only 
concerned with possible violation of the deterministic nature in classical mechanics. 
 
In the birth of Newtonian mechanics, very ordered motion of the planets in our solar 
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system had played important roles. Each of the planets circles along its elliptic orbit 
about the sun with a definite period and its motion is quite stable and likely to last 
forever. The motion of the planets was fully understood in terms of Newton's laws of 
motion and gravity, showing us great power of the natural laws governing motion of 
bodies. 
 
Newton's laws of motion and the resultant ordered motion of the planets in the solar 
system were quoted as a prototype of the constitutional laws and political order 
resulting from interplay of the laws and people in England. For example, in 1728 
Desagurie wrote a poem to praise the constitutional monarchy of England, in which he 
quoted the ordered motion of planets about the sun as a prototype of the constitutional 
political system of England. He compared the sun to the King, the planets to Ministers 
of the Cabinet, and the laws of motion and gravity to the constitutional laws of England. 
 
The King rules Ministers through his power just like the sun rules motion of the planets 
through its gravity. In turn, the King is subjected to the acts of Ministers through the 
constitutional laws just like the sun gets reactions from the planets through their 
gravities. Planets in the solar system circle about the sun steadily and their ordered 
motions are likely to continue for ever. Likewise, the political system in England based 
on the constitutional laws is stable and well ordered, thus likely to last forever. 
 
At the end of the 19th century, Poincare first questioned about stability of the solar 
system and showed that the system could become unstable even within the framework 
of the Newtonian mechanics. This is not to say that the sun finally will come to death 
because of consumption of its fuel (hydrogen nuclei) or that the solar system will 
become unstable due to strong disturbances by some external bodies. Instead, he 
discussed instability due to gravitational forces among stars within the solar system. 
When we consider motion of a system consisting of three bodies such as the sun, the 
earth and the moon, we cannot solve rigorously Newton's equations of motion for the 
three bodies interacting with each other through gravity. Therefore, it is difficult for us 
to predict the long term behavior of the motion of the three bodies and some unexpected 
instability of the motion may arise. 
 
For two- body problems such as motion of the earth relative to the sun, we can solve 
exactly the equation of motion. The result is an ordered periodic motion and the earth 
moves along its elliptic orbit about the sun steadily forever. In the case of three-body or 
more than three-body problems, even able mathematicians cannot solve rigorously the 
equations of motion for them. One has to start from an approximate solution and then 
improve it step by step in order to get better solutions. 
 
As an example, let us consider a three-body system consistingof the sun and two 
planets. Each of the planets moves along its elliptic orbit about the sun due to the 
gravity of the sun. When we neglect the relatively weak gravity between the two 
planets, the above elliptic orbits are stable and the planets will continue moving along 
their orbits forever. 
 
Next, we take into account the gravity between the two planets as a small perturbation 
to the motion of the planets. Suppose, for simplicity, one of the planets moves about the 
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sun with a period of 2 years and the other planet moves with a period of 3 years. Then 
after every 6 years the relative position of the two planets becomes the same and the 
gravitational forces between the two are the same in its magnitude and direction. 
Therefore, small perturbations due to the gravity between the two planets would 
accumulate additively once for every six years and the perturbations might grow, 
eventually leading to a large disturbance on the motion of the planets. 
 
In general, when two periodic motions of different bodies coexist in a system with the 
ratio of the periods equal to a ratio of simple integers, the periodic motions could be 
sufficiently disturbed in a long run by a weak force between the bodies and the ordered 
periodic motions might be sufficiently disturbed to change into irregular ones. In 
particular, when one of the planets in the above three body system is very light, it was 
shown that the lighter planet will be eventually knocked out and will move away from 
the system. On the contrary, when the ratio of the periods is an irrational number (a 
number which cannot be expressed as a ratio of two integers), we do not expect additive 
accumulation of small perturbations due to the weak gravity between the planets, and 
the three-body system is likely to maintain the ordered stable motion forever. 
 
There exist quite many small planets called asteroids moving about the sun along orbits 
located between the orbits of Mars and Jupiter. Jupiter is the most massive planet in the 
solar system, and asteroids are acted by the gravity of the Jupiter as the largest 
perturbation to their orbits. In Fig. 2.1 we show the number of observed asteroids as a 
function of the ratio of the period of the elliptic motion of the Jupiter (TJ ~ 11.86 years) 
to the period T of motion of an asteroid. The figure shows clearly that asteroids with the 
ratio of simple integers such as 2, 3 and 4 are very scarce. 
 

 

Figure 1. The relative number f of observed asteroids as a function of the ratio of the 
period of Jupiter to that of an asteroid. 

In general, asteroids with the ratio of simple rational numbers seem to be scarce 
according to the observation of asteroids. This is an indirect evidence for the instability 
of motion of some of asteroids. There the gravity of the Jupiter acts on asteroids and 
disturbs their motion, the small disturbances on some of the asteroids accumulate 
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additively, and finally their orbits are much distorted so that the asteroids get away from 
their ordered elliptic orbits. Some of meteorites coming to the earth are regarded as 
those asteroids knocked out from their stable orbits. 
 
As we have shown in the above example, there exists a system where the equation of 
motion of the system is deterministic, but its asymptotic behaviour is very irregular and 
hard to predict. This kind of motion is called chaotic motion. Since the 1960s chaotic 
motion of a system has been studied extensively and various types of chaotic motion 
have been found in a wide range of systems and phenomena. This was partly because 
large and fast electronic computers became available to us and the results of numerical 
calculations using them disclosed the existence of chaotic solutions in many dynamical 
systems. 
 
Now, we have to ask what chaotic motions really mean. In general, a dynamical system 
is described by an appropriate set of dynamical variables, which we denote by Xi (i = 1, 
2,…, N). Here, N is the number of the dynamical variables of the system. The general 
form of a set of equations to determine time evolution of the system is 
  

1 2( , , , ) ( 1, 2, , )i i NdX dt F X X X i N= =… …                                                      (1)
     
Here dXi/dt is the rate of change of Xi in time, i.e. the time derivative of Xi and Fi is a 
function of all Xis. The set of the functions Fi uniquely specifies the system. Since the 
values of Xi at an instant of time determine the subsequent change of Xi in time, the 
system described by Eq.(1) is fully deterministic in nature. 
 
For a given set of initial values of Xi, Xi0, at an initial time t0, we can solve Eq.(1) and 
obtain Xi as a function of time; Xi(t). In most cases, if we change the initial values Xi0 by 
small amounts ΔXi0, Xi(t) also changes by a small amount ΔXi(t). Therefore, we expect 
ΔXi(t) → 0 for ΔXi0 → 0 at any t. If this is the case, we can allow small errors in the 
initial values of Xi without spoiling the deterministic nature of the system. 
 
However, it has become known that there exist dynamical systems in which small 
changes of the initial values ΔXi0 lead to large deviations of the dynamical variables, 
ΔXi(t), after long enough time passed. Furthermore, the large deviations ΔXi(t) could 
depend upon ΔXi0 in a very sensitive manner. Since we cannot know the initial values 
ΔXi0 with an infinite accuracy in practice, this means that we cannot predict the long-
term behavior of the system. Thus the presence of uncontrollable small errors in 
determination of the initial conditions of the system can lead to violation of the 
deterministic nature of the system. Such behavior of a system is called the deterministic 
chaos, because equations of motion are deterministic but long-term behavior of the 
system is unpredictable and chaotic. 
 
A simple system described by either one or two dynamical variables which change 
continuously in time does not show any chaotic behavior. In Fig.2b and 2c we show 
typical trajectories of motion of a system described by only two dynamical variables X1 
and X2. Fig.2a shows a trajectory which has a self-crossing point P. This means that the 
system can change from the same point P into two different directions, which is against 
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the deterministic nature of the system. Thus a trajectory with self-crossing points such 
as one in Fig.2a is not allowed for any deterministic system. 
 

 
 

Figure 2. Asymptotic behavior of a system described by two dynamical variables (a) a 
forbidden trajectory, (b) a fixed point, and (d) a limit cycle 

 
If we draw any continuous trajectory with no self-crossing in a finite region of the two 
dimensional phase-space (X1X2-space), we can easily convince ourselves that the 
trajectory asymptotically approaches either a fixed point or a closed curve in the phase-
space. In the former case the system approaches the fixed state denoted by the fixed 
point Q and in the latter case the motion of the system approaches a periodic motion 
moving repeatedly along the closed curve C with a fixed period. Thus the long-term 
behavior of the system is predicted as either the fixed state denoted by Q or the periodic 
motion denoted by C. 
 
When the number of dynamical variables is more than two, chaotic motion becomes 
possible even in a deterministic system described by a set of equations of the form of 
Eqs.(1) provided that the equations of motion are nonlinear. This does not mean that 
motion becomes always chaotic for a system with N ≥ 3, but means that depending upon 
the form of Fis and values of parameters appearing in Fis motion can become chaotic. 
We will describe in detail possible chaotic behavior of nonlinear systems in a later 
chapter (see Quantum Systems). 
 
The basic feature of chaotic motion is its extreme sensitivity to the initial conditions of 
motion. Even if the initial conditions change only a little, the resulting motion 
afterwards depends very sensitively on the small change of the initial conditions. This is 
illustrated in Fig.3, in which three trajectories originating from nearby points in the 
phase-space become far separated from each other after enough time passed even if they 
are confined in a finite region of the phase space. This can happen even if the 
separations of the nearby points are infinitesimally small, provided we compare the 
three trajectories after a sufficiently long time. 
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Figure 3. Chaotic motion which is extremely sensitive to the intitial conditions of 
motion 

 
Since we know initial conditions of motion only with a limited accuracy, we cannot 
predict the long-term behavior of the motion of the system. We should emphasize that 
there is no logical inconsistency between the presence of chaotic motions and the 
deterministic nature of the equations of motion. 
 
The word 'chaos' is frequently used in our daily conversation too. There chaos simply 
means a phenomenon which is so complex that we cannot find any regularity in it or 
that we cannot think of any explanation for it. The phenomenon just looks like one 
produced by accidental occurrence of many unknown external disturbances acting upon 
the system. 
 
When the number of dynamical variables of a system is large, in practice we have to 
choose a set of small number of appropriate variables to approximately describe 
behavior of the system, thereby neglecting the others. If that is the case, effects of the 
neglected dynamical variables might grow up in a long run and modify drastically long-
term behavior of the system in an unexpected manner. 
 
The deterministic chaos might look somewhat similar in its appearance to the chaotic 
behavior of a system due to the omission of a large number of dynamical variables in 
describing the system. However, the deterministic chaos is fundamentally different from 
the latter and it occurs for a system where exact equations of motion for all the 
dynamical variables are given. It can occur even for a system with a low degree of 
freedom of motion such as N = 3. Thus, the presence of chaotic motion in a 
deterministic system makes us free from the conceptual problem that everything 
including fates of people are predetermined by how our universe started. 
 
So far we have discussed the deterministic nature of physical processes and its possible 
violations. Next we shall consider physical laws, in particular, the law of energy 
conservation and the law of entropy increase which are the most basic laws in physics 
as well as in natural science in general. Here we will be mainly concerned with what the 
laws mean to physical phenomena. 
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Nature changes constantly. Many people tried to find the underlying laws which govern 
all kinds of complex processes occurring in nature. We know now that the total energy 
of any isolated system is strictly conserved and that the entropy of any isolated system 
always increases irrespective of what happens in the system. The law of energy 
conservation is a law to recognize the presence of a certain physical quantity which is 
kept constant in any process occurring and the law of entropy increase is a law to give 
the direction of change of a system when physical processes are occurring in the system. 
 
These laws are called the first and second thermodynamical laws respectively (see 
Thermodynamics and Heat Transfer in Development of Fundamentals in Physics). Not 
only physical processes but also biological phenomena cannot escape from the 
restrictions due to these laws. Although the laws alone do not uniquely determine 
change of states of a system, the laws are valid even when the system is so complex that 
we do not know equations of motion or initial conditions for the system. 
 
The word 'energy' is used not only in diverse fields of natural science but also in our 
daily conversations. Energy means, loosely speaking, ability to do work. Without 
energy one cannot do any work, and we spend a certain amount of energy when we do 
work. When work is done on a body or a system, it will gain an amount of energy 
equivalent to the work done on it. 
 
The energy conservation law was formulated by Meyer, Helmholtz, Joule and others 
and has been shown to be exactly valid without exceptions until today. A moving body 
has kinetic energy K associated with its motion. In the Newtonian mechanics K is given 
by mv2/2, where m and v are the mass and velocity of the body respectively. When a 
body is acted upon by a force, the body has a potential energy V associated with the 
force. This energy is equivalent to the amount of work done on the body by the force, 
when we bring the body from a reference position to the present position through the 
field of the force. When several forces act on a body, the potential energy V is the sum 
of the potential energies due to each of the forces. 
 
Both the kinetic and potential energies are forms of mechanical energy. The total 
mechanical energy of an isolated system is conserved in any physical process where 
neither heat nor radiation energy is involved. There are other kinds of energy besides 
the mechanical energy, such as thermal energy (heat) or energy of radiation (light). 
Even the mass of a body at rest has an energy given by E = mc2 according to Einstein's 
theory of special relativity. Different kinds of energy are convertible to one another in 
general, yet the total energy of an isolated system is strictly conserved in any process 
occurring in the system. 
 
The existence of different kinds of energy is analogous to the presence of different 
currencies in economics. American dollars, Euro dollars, Japanese Yens, and other 
currencies are convertible to one another. When we exchange one currency with 
another, the total value of the currencies in hand will not be effected. This is analogous 
to the energy conservation law in physics. The exchange rate of one currency to another 
is fixed, just like 1 calorie of heat energy is equal to 4.184 joule of mechanical energy. 
Of course, the analogy is not complete. In economics the exchange rates of currencies 
would vary in time and there are some service charges in exchange, while in physics the 
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mechanical equivalent of heat is fixed forever and no energy is lost in exchange unlike 
the loss of money in hand due to service charges in money exchange. 
 
Dyson, an eminent theoretical physicist, once quoted the following lines of a poem, 
"The Marriage of Heaven and Hell" by William Blake's (1789), as the best description 
of what energy is:  
 

"Man has no Body distinct from his Soul; for that call'd Body is a portion of 
Soul discern'd by the five Senses, the chief inlets of Soul in this age. Energy is 
the only life and is from the Body and Reason is the bound or outward 
circumference of Energy. Energy is Eternal Delight". 

 
From Newton's equations of motion one can derive the conservation of the total 
mechanical energy of an isolated system, and one can assign a fixed value of energy to 
each isolated system. Conversely we can derive the equations of motion from the energy 
of the system. For example, in the Hamilton formalism of classical mechanics, the 
Hamiltonian of the system is the total mechanical energy expressed in terms of the 
momenta and positions of particles constituting the system. If we know the Hamiltonian 
as a function of the momenta and positions, we can derive Hamilton's equations of 
motion which are fully equivalent with Newton's equations of motion (see Newtonian 
Mechanics in Development of Fundamentals in Physics). In this sense, energy is the 
quantity to determine time evolution of a system and is the only cause for physical 
phenomena occurring in the system. 
 
Different kinds of energy can be regarded as the different aspects of energy carried by 
microscopic constituents of matter and radiation. According to the kinetic theory of 
gases, the temperature of a gas is related to the random motion of a large number of 
molecules in the gas and the thermal energy (heat) of the gas is the sum of kinetic 
energies of the molecules in random motion. Thus, the thermal energy can be regarded 
as a kind of mechanical energy in the microscopic point of view. If each molecule in a 
gas changes its state according to Newton's equations of motion, the sum of the 
mechanical and thermal energies must be conserved, because they are all mechanical in 
nature. 
 
Quantum physics has brought about some basic changes in our concept of energy. 
Although we will discuss quantum physics in a later Chapter (see Quantum systems), we 
will briefly outline the basic changes brought by quantum physics. First, energy is 
related to time translation of the system. The translation in time is defined as the 
displacement of the origin of time coordinate; t ⇒ t − τ , where τ is a constant. Since 
forces acting upon bodies do not explicitly depend on time and accelerations of the 
bodies do not change by the time translation, Newton's equations of motion remain the 
same after the time translation. If the equations of motion or dynamical laws for a 
system are invariant under the time translation, the energy conservation law follows (see 
the section on Symmetry Principles in this chapter). This is true in classical as well as 
quantum mechanics, but in quantum mechanics energy has an additional meaning of 
being an operation on a system to translate it in temporal direction. This point will be 
discussed in a later chapter (see Quantum Mechanical Laws in Quantum Systems). 
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Second, there exist uncertainties as to values of energy of a system because of 
Heisenberg's uncertainty principle, which is a fundamental principle of quantum 
physics. According to the principle, the position and momentum of a particle cannot 
take definite values at the same instant of time. They are subject to certain uncertainties 
and their values are only given by some probability distributions specified by the state 
of the particle. 
 
In particular, whatever the state is, the uncertainties of position and momentum at an 
instant of time, Δr and Δp, must satisfy the following uncertainty relations: 
 

~ , ~ , ~x y zx p h y p h z p hΔ Δ Δ Δ Δ Δ  (2)  
 
where h is the Planck constant. Therefore, we cannot have Δx = 0 or Δpx = 0 at an 
instant of time unless Δpx = ∞ or Δx = ∞. (More rigorous uncertainty relations than 
Eqs.(2) will be described in a later chapter (see Quantum Systems). 
 
When we measure the energy of a system, we cannot measure the energy E 
instantaneously but spend a certain length of time Δt for measuring it. The value of 
energy obtained has an uncertainty ΔE, which is related to Δt through the uncertainty 
relation: 

~E t hΔ Δ  (3)  
 
The value of the Planck constant h is very small in the ordinary scales of energy and 
time, which is given by h = 6.62×10−34joule⋅sec. Therefore, the uncertainties can be 
safely neglected for macroscopic systems, but they become important for microscopic 
ones such as atoms and elementary particles. When we measure any physical quantity, 
there always exist experimental errors due to measuring devices or method employed. 
Furthermore, even if we repeat measurements under the same conditions, there exist 
statistical fluctuations in the measured values and we do not obtain the same value for 
the quantity to be measured. In classical physic we can improve measuring devices and 
methods to reduce experimental errors, and we can repeat measurements many times to 
reduce statistical errors. Thus, at least in principle, ΔE can be made arbitrarily small in 
classical physics. 
 
We should stress that the uncertainties in quantum systems expressed by Eqs. (2) and 
(3) are not the ones which we can reduce through further improvement of experimental 
devices or methods, or through averaging over many repeated measurements. Instead, 
they are the uncertainties which originated from the fundamental principle of quantum 
physics and they are valid irrespective of how we measure the physical quantities. 
 
We shall draw the following analogy to understand what the uncertainty relation 
between energy and time means. Suppose one borrows money from a friend. When the 
sum of money is 1,000$, he can borrow it only for one day. If the sum is 100$, he might 
be able to borrow it longer, e.g. 10 days. If there is no guarantee or interest, one can 
borrow larger sum of money for shorter length of time in general. In the above example, 
the amount of debt is inversely proportional to the length of time one can borrow 
money. 
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In order to buy something or even to do some work, we usually need money. If money 
in hand is not enough, we have to borrow money from someone or a bank. If we 
compare the sum of money in hand to the energy E, the sum of debt (or loan) to the 
energy uncertainty ΔE, and the length of time in debt to Δt, the uncertainty relation 
between ΔE and Δt is quite analogous to the relation between the amount of debt and the 
length of time in debt. 
 
Of course, there exists some difference between the two cases. When one borrows 
money, one needs someone to lend him money. In quantum physics, a body does not 
need any other object to transfer energy to the body. The energy of the body itself is 
uncertain in principle by an amount ΔE specified by the uncertainty principle. 
Therefore, it looks like as if the body can borrow energy from vacuum. 
 
Now we shall ask what implication the uncertainty in energy has on physical processes. 
Suppose a body is at rest at the bottom A of a valley shown in Fig.4. In classical physics 
the body has to stay there forever. If the body can borrow enough amount of energy, it 
can climb to the top B of the hill and then move down to the bottom C of the next 
valley. The minimum energy required for the body to go over the hill is equal to the 
difference between the potential energies at the points A and B. In quantum physics, if 
the energy uncertainty ΔE of the body is larger than the minimum energy for a period of 
time Δt long enough for the body to climb up the hill, the body can move from A to C. 
 

 
 

Figure 4. Can the body go over the hill of potential energy? 
 

Since the Planck constant h is very small, the product of the debt in energy and the 
length of time in the debt is too small for any macroscopic body to climb up any hill of 
a macroscopic scale. The situation would be totally different when we consider a 
microscopic object such as an electron. Suppose an electron moves in an electrostatic 
potential due to the positively charged nuclei of two neighbouring atoms as shown in 
Fig.5. The potential has two valleys corresponding to states in which the electron is 
trapped in either one of the two atoms. The height of the peak of the potential between 
the two valleys is of the order of one electron volt (1eV = 1.60×10-19joule), which is the 
energy scale characterizing microscopic systems. The distance R between the two atoms 
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is of the order of 10−10m. 
 

 
 

Figure 5. An electron can move from one valley to another due to the uncertainty 
principle 

 
To move from one valley to the other, the electron has to climb up the hill between the 
valleys and must have an energy uncertainty of the order of ΔE ~ 1eV ~ 1.6×10−19joule. 
From the uncertainty relation (3), the time required for the electron to climb up the hill 
is of the order of Δt ~ h/ΔE ~ 4×10−15s or less. The velocity of the electron with kinetic 
energy of ΔE ~ 1eV is of the order of one thousandth of the light velocity c, and then the 
time needed for the electron to climb up the hill is about a/(c/1000) ~ 3×10−16s, which is 
a little shorter than Δt. Thus, the electron can move from one valley to the next one due 
to the energy uncertainty in quantum physics. In classical physics the electron cannot 
climb up the hill, because its kinetic energy is less than the energy difference between 
the peak and the valley of the potential. 
 
Thus, electrons in matter can move from the site of one atom to neighbouring sites of 
other atoms due to the energy uncertainty in quantum systems. It is known that electric 
currents in metals are carried by electrons, which can more or less freely move in the 
metal because of the effect of the uncertainty principle described above. 
 
Now, we shall ask how we understand the law of energy conservation under the 
circumstance of having the uncertainty relations. If we measure the energy of a system 
by spending an infinite time, then there is no energy uncertainty and the energy 
conservation law is not affected at all. Even if the measuring time is of the order of 1 
second, the expected energy uncertainty is ΔE ~ h/Δt ~ 4×10−15eV, which is extremely 
small even in the microscopic energy scale. Thus, in macroscopic physics we can safely 
assume that the energy conservation law is strictly valid for any physical process 
occurring in nature. 
 
In modern physics any force is known to be mediated by some appropriate particles 
exchanged between the interacting particles (see Types of Interactions in Particles and 
Fields). The electromagnetic force is mediated by exchange of massless photons. The 
nuclear force between protons and neutrons is mediated by exchange of massive 
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particles such as pions and the weak force is mediated by exchange of very massive 
particles called weak bosons. 
 
The energy mc2 associated with the mass m of a massive particle is large, and these 
massive particles exchanged between interacting particles can exist only when the 
energy uncertainty ΔE of the system is greater than mc2. Therefore, the massive particle 
mediating force can exist for only a short time period given by Δt ~ h/ΔE ~ h/mc2. These 
particles are called virtual particles because they exist only for a short time allowed by 
virtue of the uncertainty in energy. Even if a virtual particle moves with the speed of 
light, it can move at most a distance of the order of h/mc. Therefore, the force mediated 
by exchange of a massive particle with mass m is action at a short distance and can act 
only between particles which are apart less than the distance h/mc from each other. 

The Law of Entropy Increase 

As was mentioned before, existence of different kinds of energy is analogous to 
existence of different currencies such as American dollars, Euros or Japanese Yens. 
Different kinds of energy are convertible to one another just like different currencies are 
interchangeable with one another. If there is no service charge for exchange, the sum of 
values of the holding currencies is unaffected by the exchange, which might correspond 
to the energy conservation law in physics. 
 
We know that there exist differences in qualities of currencies which depend upon 
economical circumstances at the time. Some currencies are good ones, because one can 
change these currencies to others at any time, anywhere and by any amount without any 
trouble. Some currencies are bad ones, because they are not easily changeable to good 
currencies at the normal exchange rates, except at a higher exchange rate in black 
markets thereby losing some of the values of currencies in hands. 
 
Similarly, there exist differences in qualities of energies. Energy of good quality can be 
easily converted into energy of bad quality by any amount without any restriction. On 
the contrary, energy of bad quality is not easily convertible into energy of good quality, 
and, when it is converted, only a limited fraction of the energy can be converted. For 
example, the mechanical energy and the electromagnetic energy are of good quality and 
the thermal energy is of bad quality. As we learned in Thermodynamics and Heat 
Transfer in Development of Fundamentals in Physics, any heat engine which works 
between two heat reservoirs at temperatures T1 and T2 (<T1) can convert heat energy 
into mechanical energy with an efficiency less than (T1 − T2)/ T1(<1), meaning that we 
cannot convert heat into mechanical energy without disposing of some fraction of heat 
to the lower temperature heat reservoir. 
 
The existence of quality in energy is related to the existence of the preferred direction in 
which physical processes occur or to the law of increase of entropy which tells us the 
direction of change of physical systems. Most of physical processes occurring in nature 
are irreversible except possibly simple idealized motion such as oscillation of a 
pendulum with no frictional force acting upon it or quasistatic processes occurring at 
infinitely slow speed. Therefore, in general, there exists a preferred direction in change 
of states of a physical system. 
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When we have two bodies at different temperatures in close contact with each other, 
heat is always transferred from the hotter body to the colder one and finally they 
become equal in temperature. It never occurs that two bodies with the same temperature 
spontaneously become different in temperature. Thus, the heat conduction is an 
irreversible process in which heat flows from hotter bodies to colder ones and not vice 
versa. 
 
As another example, consider an actual oscillatory motion of a pendulum in a box as 
shown in Fig.6. We know that the amplitude of oscillation gradually decreases and the 
pendulum will finally stop due to frictional force between the pendulum and air 
surrounding it. The mechanical energy of motion of the pendulum was transferred to the 
heat energy of the air and we can find out a little increase of temperature of air if we 
measure its temperature. 
 
This simple phenomenon can be regarded as a process in which the energy carried by 
the pendulum is transferred to the kinetic energy of random motion of molecules in the 
air. The degree of freedom of motion is one for the pendulum and 3N for the molecules 
in the air, where N is the total number of molecules in the air. Thus, the process means 
that the energy concentrated in one degree of freedom is dispersed and redistributed 
over the 3N degrees of freedom of motion. In general, a state of a system in which the 
energy is concentrated in a small degree of freedom of motion would likely to change 
into states where the energy is distributed over many degrees of freedom. 
 
In 1865, Clausius introduced a quantity called entropy. The change of entropy S of a 
body at temperature T was defined as ΔS = ΔQ/T, when the body gets an amount of heat 
ΔQ from its surroundings. As we described in Thermodynamics and Heat Transfer in 
Development of Fundamentals in Physics, the second thermodynamical law tells us that 
the entropy of any isolated system should increase in any process occurring in the 
system. 

 
 

Figure 6. The irreversible motion of a pendulum (dots denote the calm air molecules 
and the arrows signify their state of agitation) 
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In thermodynamics, the state of a macroscopic system (macrostate) in thermal 
equilibrium is described by a set of small number of macroscopic thermodynamical 
variables such as temperature, pressure, volume, internal energy and entropy. These 
variables are related to one another through the equation of state and only two of them 
are independent variables in most cases. 
 
However, any macroscopic system consists of a huge number of atoms and molecules, 
and the degree of freedom of motion is extremely large and almost infinite. Therefore, 
there are quite many microscopic states (microstates) which cannot be differentiated 
from each other by the small set of the macroscopic dynamical variables. This means 
that there exist a large number of different microstates which belong to a single 
macrostate specified by a set of values of the thermodynamical variables. Let us denote 
the number of different microstates for a given macrostate by Ω, and define the entropy 
S of that macrostate by 
 

lnS k= Ω  (4)  
 
Here, k is the Boltzmann constant and ln Ω is the natural logarithm of Ω. The entropy 
introduced above turns out to be identical with the entropy introduced by Clausius as we 
shall see later. Thus, the formula S = k ln Ω gives the meaning of entropy based on the 
microscopic point of view. 
 
Suppose that in thermal equilibrium every microstate is realized with an equal 
probability as far as the state is compatible with the energy conservation law or any 
other constraints imposed on the system. Then, each macrostate will be realized with a 
probability proportional to its Ω. If Ω for a certain macrostate is overwhelmingly large 

compared with Ω of other macrostates, we can safely assume that the particular 
macrostate is realized in thermal equilibrium, thereby neglecting presence of other 
macrostates which occur with exceedingly small probabilities. If the system starts from 
a macrostate with a small value of Ω, it will change into states with larger values of Ω 

and finally settle in the macrostate with the maximum value of Ω. Thus, the direction of 

change of states of the system should be in the direction of increasing Ω, i.e., increasing 
entropy of the system. 
 
As an example, let us consider a gas contained in a box. The number of molecules in the 
gas is N, which is much larger than 1. For example, if the volume of the gas is 22.4 
litters, N is equal to the Avogadro number 6×1023 for the gas at the normal pressure and 
temperature (1atm and 0°C). We imagine that the box is divided into two compartments 
of equal volume as shown in Fig.7. Each molecule in the gas is moving fast and changes 
its position from one compartment to the other very rapidly. Thus, each molecule is 
equally likely to be in the right or left compartment. 
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Figure 7. Motion of molecules in a gas (the dots denotes molecules while the arrow 
indicates the direction of motion of the molecule) 

 
At an instant of time, we may find N/2 + m molecules in the right-compartment and N/2 
− m molecules in the left-one. The number of different ways to choose N/2 + m 
molecules out of the N molecules is 
 

/ 2( , ) !/(( / 2) )!( / 2) )!N N mN m C N N m N m+Ω = = + −  
 
The number 2m represents the unbalance in number of molecules between the right and 
left compartments. The deviation δρ of density of the gas in each compartment from the 
average density ρ is given by δρ/ρ = ±2m/N. 
 
For small values of N, one can easily calculate Ω(N, m). For large values of N, we can 
use the mathematical formula called Sterling's formula to obtain an approximately 
correct value of Ω. The formula is 
 

( ) ( )1/ 2 2( , ) ~ 2 2 exp 2NN m N m N−Ω  (5)  
 
which is well valid for N m�  and 1m� . The calculated result for N = 100 is shown 
in Fig.8. We can see from the figure that the values of Ω(N, m) are quite large for small 

values of ⏐m⏐ and that Ω decreases rapidly when ⏐m⏐ increases beyond N1/2 (= 10). 
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Figure 8. Ω(100, m) 10-24 

 

We define a microstate by specifying the position of each of molecules to be either in 
the right- or left-compartment. Since every molecule is equally likely to be in either one 
of the compartments, it is expected that each microstate thus defined is realized with an 
equal probability. A macrostate can be defined by the value of the density unbalance 
δρ ρ  between the two compartments. Since we cannot measure positions of individual 
molecules, we can only find δρ ρ  as the macroscopic variable to describe the state of 
gas in the box. 
 
For a given macrostate specified by δρ ρ  (= 2m/N), the number of corresponding 
microstates is given by Ω(N, m). Since N is large and of the order of the Avogadro 

number NA, only those macrostates with ⏐m⏐ less than N1/2 have large enough Ω to be 
realized with an appreciable probability. Thus, the density variation between the two 
compartment, δρ/ρ, is of the order of N−1/2 or less and for N = NA it is about 10−12 or 
less. This means that the density of the gas in thermal equilibrium is homogeneous. 
 
In Fig.9a we show two macrostates in which all molecules exist exclusively in either 
one of the right or left compartments (δρ ρ = ±1). After enough time passed, both the 
states would change into the same state of uniform density as shown in the figure. 
Instead of dividing the box into two compartments, we can imagine to divide the box 
into many small compartments of equal volume as shown in Fig.9b. In this case too, we 
can find that states of the gas change into a thermal equilibrium state with its density 
being homogeneous throughout the whole compartments, if the size of the small 
compartment is large enough to contain a large number of molecules much larger than 
1. 
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Figure 9. The state of a gas in thermal equilibrium is uniformity in density 
 

When a box is filled with a gas, the gas will diffuse from high-density regions to lower 
density regions in the box and the state of the gas changes into a state of uniform 
density everywhere in the box. Likewise, if we make a hole on the wall of the box, the 
gas will spread out to open space through the hole. No reversed processes take place. 
All these phenomena are diffusion processes in which a gas moves from higher density 
regions to lower ones accompanied with increase in the entropy of the system. 
 
One of the characteristic features associated with irreversible processes is the loss of 
memory of the history. Since a large number of different macrostates lead to the same 
equilibrium state with maximum entropy, we cannot tell from which state the system 
has evolved into the present macrostate in thermal equilibrium. 
 
We can measure macroscopic properties of a system such as pressure, temperature and 
matter density, through which we know the macroscopic state of the system. However, 
we do not know which one of the possible microstates is actually realized at a time. In 
general, the microstate of a system changes very rapidly from one to another with time. 
We can observe only those macroscopic quantities which do not depend on a microstate 
but depend on time-averaged properties over many microstates. 
 
If Ω or the entropy of a macrostate is large, the system takes within a short time interval 
a large number of microstates which we cannot differentiate from each other. Thus, a 
macrostate with a large value of entropy is really a quite complex system, more 
complex for larger values of entropy. On the contrary, a macrostate with a small value 
of entropy is an ordered state which is a mixture of a small number of microstates. If S = 
0 and Ω = 1, one can tell what the microstate is for the given macrostate. Thus, the 
concept of entropy is related to the concept of degree of order in the structure of matter 
through the microscopic interpretation of entropy (S = k ln Ω). 
 
In order to evaluate entropy, we have to know what microstates are and how we 
calculate the number of microstates compatible with a given macrostate. For a classical 
system it is sufficient to know at a time t the positions and momenta of all the 
constituent particles of the system to uniquely specify the state of motion of the system. 
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Then, a microstate of a system composed of N particles can be represented by a set of 
values (qi, pi) (i = 1,2, …, 3N), where qi and pi denote each component of the position 
and momentum vectors of the N particles. The set (qi, pi) can be understood as a point in 
the 6N-dimensional phase space. 
 
We can subdivide the entire phase space into small volume elements d3Nqd3Np. For a 2-
dimensional phase space (one coordinate and one momentum) this is illustrated in 
Fig.10. The phase space element d3Nqd3Np, which can be of finite size, is called a phase 
space cell. 
 

 
 

Figure 10. Phase space cells 
 

In the course of time, a system started from a point in the phase space will move to 
different points and draw a continuous trajectory in the phase space. Let us consider a 
phase space volume element ΔV and assume that each point in the volume is the starting 
point of a phase space trajectory. Through the bundle of trajectories started from points 
in the volume ΔV, the volume ΔV at the initial time is mapped onto another volume 
element ΔV(t) at a later time t as shown in Fig.11. For any conservative system, it can be 
shown that the phase space volume does not change with time; ΔV(t) = constant. This is 
called the Liouville's theorem. 
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Figure 11. Liouville's theorem 
 

Suppose we divide the entire phase space into small phase space cells of equal volume. 
Liouville's theorem assures us that this way of division is time-independent. If we take 
the volume of a cell small enough so that any two points in the cell cannot be 
differentiated by actual measurements of positions and momenta, we can reasonably 
specify a microstate by a cell in which the state is. Since in classical physics there is no 
limitation in accuracies of measurements of these variables in principle, we can even 
take infinitely small cells to represent microstates. 
 
In quantum physics, there are the uncertainties in values of positions and momenta of 
particles in principle. The uncertainty relation between the corresponding components 
of the position and momentum of a particle is ΔqΔp = h, where h is the Planck constant. 
Thus, the natural choice for the volume of the phase space cell is h3N and each cell 
specifies a quantum microstate of the system (see the topic 4). 
 
Once we specify the microstate by a cell it belongs to, it is straightforward to calculate 
the number of microstate for a given macrostate. For example, when the energy of a 
macrostate is between E and E + ΔE, the number of corresponding microstates is given 
by the ratio of the volume of phase space with energy between E and E + ΔE and the 
volume of the unit cell. 
 
Another basic problem related to the concept of entropy is the plausibility of the equal 
probability of all microstates, which can only be justified by experimental studies of its 
consequences. In a closed system of finite size, a large number of constituent particles 
exert forces on one another and constantly change their positions and momenta. 
Therefore, in thermal equilibrium the system is expected to take any of microstates 
compatible with the macrostate in the course of time evolution and, if we average over 
an appropriate time interval, all microstates compatible with the macrostate will be 
realized with equal probability. 
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In order to check the equal probability of all microstates, one has to study time 
evolution of each individual system. In principle, we can follow the change of a 
microstate if we assume an appropriate internal dynamics of the system. In fact, by use 
of modern computers we can compute the time evolution of a microstate of a system 
which consists of not too many constituent particles. In most cases calculated results are 
affirmative for the equal probability of all microstates. 
 
When the strength of force between the particles is made weaker, it takes longer time 
for the system to reach thermal equilibrium and realize equal probability of all 
microstates. The characteristic time for a system to reach a thermal equilibrium is called 
the relaxation time. 
 
As an important application of the relation S = k ln Ω, we shall consider the thermal 
motion of molecules in a gas. As shown in Fig.12, a gas contained in a box is in close 
contact with a large heat reservoir of temperature T. Heat exchange between the gas and 
the heat reservoir takes place constantly through the boundary surface between the two. 
After enough time passed, the temperature of the gas will become equal to T through the 
heat exchange, and the gas and the heat reservoir are in thermal equilibrium relative to 
each other. 

 

 
 

Figure 12. The gas and the heat reservoir in thermal equilibrium 
 

Even in thermal equilibrium, there are heat flows microscopically, but the amount of 
heat coming into the gas from the reservoir is just cancelled by the heat coming out 
from the gas into the reservoir in average. The gas in the box is not an isolated system 
because of heat exchange with the reservoir, but it can be called as a closed system 
because of no net flow of heat between the gas and the reservoir. 
 
Now, let us consider the energy distribution of molecules in the gas. The heat reservoir 
is a large system with a large heat capacity so that its temperature T will be kept 
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constant in spite of heat exchange with the gas. The number of microstates Ω(E) of the 
reservoir with energy E is very large and increases with increasing E. Since the large 
heat reservoir consists of a huge number of particles, there should be many different 
ways to divide E into energies of the particles in the reservoir and the number of 
different ways should certainly increase if we add more energy to the reservoir. 
 
Suppose that a molecule in the gas gets energy ε through its heat exchange with the 
reservoir. Then, the energy of the reservoir becomes E − ε  because of the energy 
conservation law. The energy ε  is of a microscopic magnitude which is very small 
compared to E. Thus, the entropy of the reservoir of energy E − ε  can be approximated 
by 
 

( ) ( ) ( )S E S E dS E dE− = −ε ε  (6)  
 
In Fig.13 we show the entropy S as a function of E. The derivative dS/dE is given by the 
inclination of the tangential line of the curve S(E) at the point E. 
 

 
 

Figure 13. Entropy S as a function of E. 
 
The number of microstates of the whole system composed of the reservoir and the 
single atom with energy ε is given by the number of microstates ( )E − εΩ  of the 

reservoir with energy E − ε : ( ) ( )( )expE S E k− = −ε εΩ  which depends on ε  as 
 

( ) ~ exp ( ( / ) ( ) / )E k dS E dE− −ε εΩ  
 
If we define the temperature of the reservoir by 
 

( ) 1dS E dE T=  (7)  
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the probability for finding a molecule in a state of energy ε  is proportional to the factor 
exp(−ε /kT), which is called the Boltzmann factor: 
 

( )~ exp kT−εΩ  (8)  
 
The relation (7) is equivalent to the relation ΔS = ΔQ/T introduced by Clausius, thus 
showing that the entropy defined by S = k ln Ω is equal to the entropy in classical 
thermodynamics. We have derived the energy distribution of a molecule in the gas 
through the heat exchange between the heat reservoir and a single molecule in the gas. 
Since every molecule behaves in the same way, the energy distribution is common to all 
molecules and it can be taken as the statistical distribution of energy averaged over all 
molecules in the gas. 
 
Although we derived the distribution function (8) by taking into account heat exchange 
between a single molecule and the heat reservoir, each molecule exchanges energy not 
only with the heat reservoir but also with other molecules in the system. If we consider 
the reservoir plus all other molecules as a heat reservoir, the same distribution function 
is obtained as the energy distribution of a molecule. Also the same distribution is 
obtained for a molecule in any system in thermal equilibrium irrespective of whether the 
system is in a gas, a liquid, or a solid phase. 
 
We have discussed microscopic interpretation of entropy and of the second law of 
thermodynamics. Even it gives the definition of the absolute temperature T in terms of 
entropy. Statistical mechanics which we shall describe in a later chapter (see Statistical 
Physics in this chapter) will give us a more comprehensive relation between 
thermodynamics and microscopic theory of matter. 
 
The law of entropy increase is a basic law in physics which determines the direction of 
change of physical systems or the direction of flow of time. In Fig.14 we show some 
typical physical phenomena which increase the entropy of the system. Increasing 
number of molecules in the system, addition of heat energy, increasing volume of the 
system, dissociation of molecules into its constituents, deformations of molecules from 
a simpler form into more complex forms are examples of processes which increase the 
entropy of the system. Readers will find for themselves that the number of microstates 
available increases in any of these processes. 
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Figure 14. Various processes that increase entropy 
 
Although entropy always increases in any process occurring in an isolated system, it can 
decrease for an open system, one into which fluxes of energy and matter can come and 
go, and the state of the open system can change from a less ordered state to a more 
ordered state. This problem will be discussed in detail in the forthcoming chapter (see 
Order and Disorder in Nature). 
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