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Summary 
 
In this chapter, the history, principles and applications of optical and electron 
microscopy are reviewed.  
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The standard optical microscope, which is still the most widely used type of 
microscope, has remained essentially unchanged for more than a century, since the 
theoretical resolution limit of about 200nm (set by the wavelength of visible light) was 
attained in the 1880s. The instrument consists essentially of a combination of two 
lenses, an objective and an eyepiece, the product of whose magnifications gives the 
magnification of the final image. It is an irreplaceable tool in the biology or biomedical 
laboratory for the study of cell and tissue structure and for general biopsy work. It is 
also very widely used in the materials sector.  Modern developments do exist, including 
confocal microscopy, yielding high quality 3-D information. 
 
The transmission electron microscope (TEM) provides the highest resolution images 
available, with atomic resolution being routinely achieved for a wide variety of 
materials. The technique is analogous to its optical counterpart in the transmission mode 
(light or electrons being transmitted through the sample before being used to create the 
image. The very high quality performance of the instrument comes at the price of rather 
extreme specimen preparation requirements, particularly in the life sciences, and very 
complicated contrast mechanisms, making image interpretation difficult, particularly in 
the physical sciences. The imaging capabilities of the instrument are complemented 
with easily obtainable diffraction patterns for structure studies and spectroscopic 
techniques for chemical analysis of the specimen. 

The scanning electron microscope (SEM) combines, at least partially, the ease of use of 
the optical microscope with the analysis capacities of the TEM. The imaging principle 
of the instrument is very different from those of the other microscopes described here. 
The objective lens does not form an image of the sample, but rather a fine probe that is 
scanned across the sample surface. The image consists of the variation, as a function of 
the probe position, of some signal generated by the probe’s presence. This signal is most 
often the secondary electrons emitted by the sample under the probe. The SEM can 
observe bulk samples several centimeters in size and is consequently more flexible in its 
applications than the TEM.  The highest resolution attainable is however somewhat 
more modest — of the order of a few nanometers. Applications are extremely varied 
across the life and physical sciences. 

1. Introduction 
 
From the simple magnifying glass to the most advanced electron microscopes, there 
exists today an ever-expanding range of instruments whose principal function is to 
produce a magnified image of a small object. In fact, the sheer number and diversity of 
the techniques available renders a complete description of all of them beyond the scope 
of this chapter. Here we will limit ourselves to a presentation of two of the three main 
families of instruments: optical, and electron microscopes. The highly surface-sensitive 
"near field" or "scanning probe" microscopes are covered in Optical Sources and 
Detectors. Important sub categories and/or techniques will be included where possible.  

Optical microscopy may be defined as the formation of a magnified image of a small 
object, using visible light as the illumination. It is still the most widely used of these 
three families, mainly because of its cheapness and simplicity. However, it also 
possesses advantages and unique features which are not available from non-optical 
instruments. In addition, there have been recent developments such as confocal 
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scanning optical microscopy, which have increased its capabilities in some areas. But 
the essential design of the standard instrument has not changed for over a century; an 
objective lens forms a magnified image of the object, which is then further magnified by 
the "eyepiece" lens. The product of the magnifications of objective and eyepiece gives 
the final magnification. Optical microscopes are used widely for the observation of 
biological sections, for metallographic observations and for quality control in a wide 
variety of areas, notably in the electronics industry. Although training is necessary for a 
microscopist to exploit all the possibilities of the instrument, basic operation for routine 
visual checking is very simple and can be performed quickly. The principal 
disadvantage of the optical microscope is the natural resolution limit, which restricts the 
minimum size of detail that can be seen to about 0.2 microns. This limit is imposed by 
the wavelength of visible light (which is of the same order — around 0.5 microns) and 
thus cannot be overcome by improving the optical components of the instrument. One 
way of overcoming this limit is to use shorter wavelength light, i.e. ultraviolet light or 
even X-rays. X-ray microscopes constitute an active area of research and can yield 
images of high resolution, but the focusing of X-rays is problematic and the instruments 
currently still have severe limitations. We will not further discuss their use here. 

Another solution is to use a different type of radiation altogether to "illuminate" the 
object. Quantum physics describes how sub-atomic particles, such as electrons, protons 
and neutrons, can be treated as waveforms (just as visible light may also be considered 
to be particulate in nature). This so-called wave-particle duality means that a 
microscope can, in principle, be constructed using object "illumination" by any type of 
particle, and its resolution will theoretically be limited by the wavelength of the 
particle's associated waveform. In practice, the best particles to use for this purpose are 
electrons, which can be readily produced in a collimated beam and also can be 
accelerated and focused by electric and magnetic fields. An electron accelerated by an 
electrical potential of several hundred kilovolts (kV) has a wavelength of a few 
picometers (10-12m). A microscope capable of resolving detail on this scale would 
reveal considerable structure in the interior of individual atoms. In practice, the best 
high-resolution electron microscopes (HREMs) currently resolve details of around 
0.1nm in size. The theoretical limit is far from being reached because of lens aberrations 
and instrumental instabilities. The performance available nevertheless allows one to 
achieve atomic resolution — atomic positions can be seen, even if the internal structure 
of the atom is not visible.  

There exist two main families of electron microscope. The transmission electron 
microscope (TEM) is an instrument that achieves the highest resolution. (The terms 
TEM and HREM are to some extent interchangeable, although the TEM is not used 
exclusively for high-resolution observations). The TEM, as its name implies, uses 
electrons that have been transmitted through the object to form the image. Its principal 
drawback is the requirement to use specimens in the form of very thin (10 — 100nm) 
sections, which can be very difficult to produce, and which may not be representative of 
the larger piece of material from which they are taken. The scanning electron 
microscope (SEM) is a more flexible and versatile instrument than the TEM and can be 
used to image comparatively bulky objects, relying as it does on electrons emitted from 
the sample surface to form the image. Specimen preparation is thus generally more 
straightforward than for TEM, as is operation of the instrument and interpretation of the 
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images. The resolution achievable is however limited to a few nanometers, so that detail 
on the atomic scale cannot be observed. 

We will now describe each of these groups of microscopes in more detail. The 
fundamental principles and the major applications of each instrument will be presented 
in a concise way. Mathematical treatments will be kept to a minimum. Full, rigorous 
treatments of the various imaging-forming mechanisms can be found in the textbooks 
and monographs listed in the bibliography. 

2. Optical Microscopy 
 
2.1. Historical Development 

There appears to be no sure evidence for the use of glass lenses to magnify objects 
before about the end of the 13th century AD. At this time the use of spectacles became 
widespread in Italy. The first compound microscopes appeared in Holland around the 
end of the sixteenth century and their invention is usually attributed to the spectacle 
maker, Hans Jansen. However, Dutch microscopist Antoni van Leeuwenhoek is also 
often cited as the father of microscopy, since the single-lens instruments he pioneered 
from about 1670 (essentially high-powered magnifying glasses) were superior in 
performance to the compound instruments available until about or even after 1800. In 
the first few decades of the 19th century, lenses corrected for chromatic and spherical 
aberrations were being developed, notably by the British amateur scientist J.J. Lister. 
This work culminated in the designs of German physicist Ernst Abbe, who also 
formalized the theory of image formation in 1877. By 1880, instruments were in use 
that had attained the theoretical limit of resolution for light microscopy. The most 
significant developments in the 20th century were probably the development by Zernike 
in the 1930s of "phase contrast" microscopy, allowing details to be seen in thin 
transparent sections which are almost invisible using standard microscopy, and confocal 
microscopy, yielding 3-dimensional images. 

2.2 Principles of Optical Microscopy 

2.2.1 The Standard Compound Microscope Configuration 
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Figure 1: The compound microscope 

 
The description which follows assumes some basic knowledge about lenses and their 
image forming properties, which can be found in Imaging and Characterising- Trace 
Element Analysis. A typical bench-top optical microscope consists essentially of a 
combination of two lenses (Figure 1). The objective lens forms a real, magnified image 
of the object. This real image serves as an object for the second lens, the eyepiece, 
which forms a virtual magnified image of it. The observer looking through the eyepiece 
thus sees this inverted virtual image whose magnification compared to the original 
object is given by the product of the magnifications of the two lenses.  

In reality, in a modern instrument, the eyepiece and the objective each consist of a 
group of several lenses combined in such a way as to minimize aberrations and other 
distortions. But these groupings are usually considered (and sold) as single lenses with a 
given focal length and numerical aperture (see next section).  

In addition, the eyepiece may be replaced with a camera consisting of a lens positioned 
so as to form a real final image in a plane containing a viewing screen, a photographic 
film or a digital image-recording device. The magnification in this final image plane is 
still given by the product of the magnifications of the two lenses. 

The dispersion of the light rays caused by the magnification process means that the 
object must be brightly illuminated if the final image is to be visible. Most microscopes 
are fitted with condensing illumination systems, which can focus light into a small spot 
on the sample surface at the point to be viewed. This light may impinge from the 
opposite side to the objective, in which case transmitted light is used to form the image 
(this is often the case for biological thin section samples). If it impinges from the same 
side as the objective, then the reflected light is used (this is the standard configuration 
for metallographical observations). 

2.2.2 Diffraction, the Abbe Theory of Imaging, Resolution Limits and Aberrations 
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Figure 2: a) Focusing of parallel light to a point b) Rayleigh criterion for resolution of 

two points 
 

The ray optics model presented above ignores the wave-nature of light. In fact, parallel 
light rays arriving at the lens will not be focused to an infinitely small point. Light 
waves consist of oscillating electric and magnetic fields, whose strength or "amplitude" 
varies as a function of position and time. At a given moment in time, the electric field of 
a parallel beam of light may be thought of as a "plane wave" — a series of peaks and 
troughs in amplitude running parallel to the direction of propagation. (The amplitude is 
thus constant in directions perpendicular to the propagation direction). The distance 
between two peaks is the wavelength λ and for visible light it is around 500nm. A 
property of waves is that they interfere with each other; the crest or peak of one wave 
coinciding with the trough of another of equal amplitude will result in a canceling out of 
the amplitudes of both waves, whereas two peaks coinciding doubles the amplitude. 
This means that many plane waves arriving towards a point from different angles 
combine to yield complicated interference patterns, with localized intensity maxima and 
minima. However, Abbe showed that no combination of waves of a given wavelength 
can be found which concentrate all the intensity into a zone whose size is less than 
about λ/2. This size is achieved if plane waves of equal amplitude arrive towards a point 
from all directions.   

The action of the lens can be seen as breaking up the incident plane wave into a range of 
plane waves all arriving at the focal point from different angles. The greater the angle 
subtended by the lens at its focal plane, the greater is the range of angles contributing 
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(Figure 2). A plane wave arriving at a lens, will thus be focused into a disc (known as 
the Airy disc) at least λ/2 in diameter, no matter how good the lens is. But this size will 
increase if the lens diameter is small compared to its focal length, or if a small aperture 
is centered on the principal axis close to the lens. In addition, there will subsidiary 
maxima in the form of rings around the central disc caused by the interference of waves 
scattering or "diffracting" from the edge of the lens, or aperture if there is one. (The 
terms "scattering" and "diffraction" are sometimes used almost interchangeably, but 
most authors reserve the use of "diffraction" for cases in which the scattered waves 
interfere with each other to cause intensity peaks and troughs). 

Similarly, light emitted or reflected from a particular point on the object will be focused 
not to a perfect point but into a blurred disc at least Mλ/2 in diameter, where M is the 
magnification (image size /object size). By a convention known as the Rayleigh 
criterion, it is said that two points are separately resolved, if the distance between the 
intensity maxima in their images is at least equal to the distance from the maximum to 
the first minimum in one of the images (see Figure 2b). This distance, which is also at 
best approximately Mλ/2 defines the resolution limit of the microscope. (although it can 
be surpassed in some cases using modern computational techniques of image treatment). 
The resolving power of the lens approaches this theoretical optimum as the ratio of its 
diameter to its focal length increases. Conventionally, objective lenses are classified in 
terms of their numerical aperture (NA) which is defined by the relation  

sinNA
n
α

=  

where α is the half angle subtended by the lens at its focal point and n is the refractive 
index of the medium between the lens and its back focal plane — see Figure 3. 

 
 

Figure 3: Definition of the numerical aperture, NA 
 

Modern objectives combine very short focal lengths with wide acceptance angles, 
leasing to values of sin α approaching 0.9. This is in practice the maximum value that 
can be achieved in air (n = 1) but "immersion lenses", designed to function with a film 
of high refractive index (n = 1.5) oil occupying the space between lens and sample (or 
cover slip) can increase NA to about 1.4. Such a lens will reproduce detail down to the 
scale of about 0.2 µm. 

In addition to the limits imposed by the nature of light, the lenses may also be imperfect 
in their operation. Important defects include: spherical aberration, which means that 
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rays impinging on the lens at large angles to the principal axis are focused in a different 
plane from those arriving parallel to the axis, chromatic aberration, which means that 
light of different colors is focused in different planes, field curvature which means 
different parts of the object are focused in different image planes and image distortion, 
which means that straight lines in the object appear skewed in the image. Most of these 
defects can be almost completely eliminated by careful lens design, but an objective 
lens in which they are all minimized will be very expensive. Users may prefer to 
consider the imaging defects that are important for their applications and invest in 
lenses which are well corrected only for these. 

2.2.3 Sample Preparation 

The degree to which specimen preparation is necessary depends to a great extent on 
what type of sample is under observation. We will just cite a few examples from the 
rather vast range of methods used. For metallographical studies, either high quality 
polishing or a chemical etch may be necessary. Chemical etching can show up features 
such as grain boundaries and dislocation sites. However, the sample must often be 
observed as received if the property of interest is not to be altered (the surface condition 
after an oxidation process, for example). Biological tissue must usually be cut into 
slices, a few microns thick by means of a microtome, and either stained or marked with 
fluorescent compounds to yield higher contrast. Individual objects such as cells can be 
deposed on glass slides by various means and are also often stained. Much of the art of 
the optical microscopist is in the selection of staining/marking techniques that will show 
up the type of matter of interest in a particular study. In general, care taken and time 
spent carefully preparing the specimen is amply rewarded in terms of the quality and 
interpretability of the observations.  

2.2.4 Image Contrast and Interpretation 

The final image consists of variations in the local intensity of light in the image plane. 
These variation are known as contrast. One of the most important skills of the 
microscopist is to be able to interpret the contrast correctly. Only in this way can 
sensible deductions be made about the nature of the sample. In standard optical 
microscopy, the contrast is due mostly to absorption and scattering of the light by the 
sample. Light which is absorbed by the sample, or which is scattered (or reflected) 
outside the acceptance angle of the objective lens or its aperture will not be available to 
form the image. Consequently, parts of the object that absorb strongly will appear dark 
in the image. Parts of a sample that have been marked with a molecule that fluoresces 
under the illumination will always appear bright (since some of the emitted light will be 
axial). In the transmission geometry, parts of the sample which scatter strongly to high 
angles will also appear dark if the incident illumination is axial (along the principal axis 
of the instrument — Figure 4a). Such an image is called a "bright-field" image, since in 
the absence of a sample the field of view appears uniformly bright. A "dark-field" image 
is obtained when the incident illumination is off-axis (Figure 4b). In this case only those 
parts of the sample scattering light back into the axial direction appear bright. Whether 
an object appears bright or dark is thus not an inherent property of the object itself, but a 
consequence of how it was prepared and how we are observing it.  
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Figure 4: Ray diagrams for a) bright-field and b) dark-field image formation. 

 
Contrast can be increased in a bright field image by placing an aperture in the objective 
back focal plane, limiting the scattering angle of the light passing through to the image 
plane. In this way, objects that scatter even to small angles will appear dark in bright 
field. There is however a price to pay in terms of resolution, because of the consequent 
reduction in effective numerical aperture. Phase contrast microscopy is a technique for 
increasing the contrast from unstained thin biological specimens (which absorb and 
scatter relatively little) without sacrificing resolution. Light passing though a thin 
section of transparent material is not absorbed, but is retarded compared to light passing 
traveling through the air, usually by one quarter wavelength, or λ/4. The idea of phase 
contrast is to increase this retardation or phase difference to λ/2 (see Figure 5). In that 
way, light having passed through the sample will interfere destructively with a reference 
beam of unretarded light, and the corresponding part of the sample will appear dark 
compared to regions in the field of view where there is no matter present (e.g. holes).  



UNESCO – 
EOLS

S

SAMPLE
 C

HAPTERS

PHYSICAL METHODS, INSTRUMENTS AND MEASUREMENTS – Vol. III - Optical and Electron Microscopy - Michael 
Walls 

©Encyclopedia of Life Support Systems (EOLSS) 

 
Figure 5: Principle of phase-contrast imaging. 

 
An example of a phase contrast image of an unstained object is shown in Figure 6. This 
is just one of a number of contrast-enhancing techniques available to microscopists.  
Users must decide which method is best suited to their requirements. 

 
Figure 6: Phase contrast image of an unstained desmid (microscopic alga). 
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There are also a number of effects and artifacts that can modify the appearance of the 
image, in particular when the features under observation are near the resolution limit in 
size. For example, Fresnel fringe effects cause such features to reverse in contrast as the 
fine focus of the microscope is varied.  A great deal of care must therefore be taken in 
interpreting the image, especially at higher magnifications, if useful information is to be 
obtained. 

 
- 
- 
- 
 

 
TO ACCESS ALL THE 31 PAGES OF THIS CHAPTER,  
Visit: http://www.eolss.net/Eolss-sampleAllChapter.aspx 

 
 
 
Bibliography 
 
Hirsch P.B, Howie A., Nicholson, Pashley, Whelan (1977) Electron Microscopy of Thin Crystals, 
[Although rather old, this is still regarded as the TEM “bible”. Formidably concise derivations of the 
essential theory of electron imaging and diffraction.] 

Williams D.B and Carter C.B. (1996) Transmission Electron Microscopy, Plenum Press, New York and 
London [an excellent and very complete and readable guide to all aspects of TEM] 

 
Biographical Sketch 
 
Michael Walls was born in Liverpool and studied physics at the University of Sheffield before 
undertaking a Ph.D. at the Cavendish Laboratory in Cambridge.  His thesis (1987) was based on 
theoretical and experimental studies in Electron Energy-Loss Spectroscopy (EELS) of surfaces and 
interfaces in the electron microscope. He then spent eighteen months performing post-doctoral research in 
the Laboratoire de Physique des Solides at the Université Paris-Sud, where he investigated using EELS 
the decomposition of carbonates under electron beams, and helped to develop algorithms for the 
elimination of EELS quantification errors due to fine structure in the spectrum. He returned to Cambridge 
in 1989 to conduct research on a range of materials using the scanning tunneling microscope (STM). In 
1991 he joined his present laboratory, the Centre d’Etudes de Chimie Métallurgique in Vitry-sur-Seine 
where his research has included; the development of new microscopic techniques for of impurity element 
site determination using Energy-dispersive X-ray spectroscopy, the analysis in the transmission electron 
microscope (TEM) of the structure of metallic multilayers grown by electrochemical methods, the 
observation by atomic force microscopy (AFM) of  corrosion processes in steels and of the formation of 
biofilms on metal surfaces, including steels and tantalum. He is also involved in the development of 
algorithms for quantitative analysis of AFM and STM and TEM images. 

https://www.eolss.net/ebooklib/sc_cart.aspx?File=E6-08-03-01

